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Abstract—With the recent advent of moderate-cost unmanned 
(or uninhabited) aerial vehicles (UAV) and their success in 
surveillance, it is natural to proceed to consider the coop- 
erative management of groups of UAVs. The problem con- 
sidered in this paper is optimization of the information ob- 
tained by a group of UAVs carrying out surveillance of sev- 
eral ground targets distributed over a large area. The UAVs 
are assumed to be equipped with Ground Moving Target Indi- 
cator (GMTI) radars, which measure the locations of moving 
ground targets as well as their radial velocities. In this re- 
search entropic information, obtained from the information 
form of Riccati equation, is used as the criterion function. 
Sensor survival probability and target detection probability 
for each target-sensor pair are also included in the criterion 
function. The optimal sensor placement problem is solved 
via deterministic as well as randomized optimization. Simu- 
lation results on two different scenarios are presented for four 
different types of prior information. 
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1. INTRODUCTION 

Sensors like, for example, radars and MTI, are used to make 
observations of a moving target with the objective of estimat- 
ing the state of the target. Multiple sensors, which give differ- 
ent perspectives of one or more targets at the same time or at 
different times, can be used to enhance estimation results. An 
important application of control theory is to manage multi- 
ple sensors such that the expected information obtained from 
them can be maximized. Management of multiple sensors 
involves gathering, exchanging and combining information. 
When the sensor platforms are mobile one has to decide the 
optimal placement of sensors. With the recent advent of af- 
fordable unmanned aerial vehicles (UAV) and their proven 
effectiveness in surveillance, it is natural to consider the co- 
operative management of groups of UAVs. 

A number of UAV management algorithms can be found in 
the literature. In [3] a hierarchical approach, that uses modi- 
fied Voronoi diagram to generate possible paths, to intercept 

a number of known targets using a number of UAVs, is pre- 
sented. Similar approaches can be found in [7], [8]. A search 
algorithm for targets in a given area is proposed in [5], where 
a discrete time stochastic decision model is formulated as the 
path planning problem, which is then implemented with a dy- 
namic programming algorithm [9]. However, the aim of [5] 
is only to detect (not to track) targets in the search region. 
In [4] a decentralized sensor management algorithm is pre- 
sented. In this paper an entropic information measure is used 
as the objective function in a target cuing and target hand-off 
problem and a multi-platform bearing only tracking problem. 

In this research we use an information theoretic approach 
similar to [4]. Here the GMTI radars measures radial ve- 
locity as well as position of the targets. Also, the survival 
probability of a sensor from hostile fire by the targets and de- 
tection probability of a target corresponding to a particular 
sensor are considered. Development of the criterion function 
is discussed in Section 2. In Section 3 different approaches, 
both randomized and deterministic, to find the maxima of the 
criterion function, are discussed and a mixed approach is de- 
veloped. Simulation results are presented in Section 4. 

2. CRITERION FUNCTION 

The criterion function, obtained from the entropic informa- 
tion measure [4], is given by 

J = ^log(|PJ(fc|fc)-1| (1) 

where Pj(k\k) is the posterior covariance of the state vec- 
tor corresponding to target j at time t* and can be written in 
terms of the state prediction covariance Pj(k\k — 1) and new 
information Yj(k) as follows [1] 

Pj(klk)-1 =PJ{k\k-l)-1 +Yj{k) (2) 

The matrix Yj (k) is the total new information about target j 
obtained by different sensors. The information obtained by a 
particular sensor s about target j is given by 

Y(k, s,j) - H(k, sjYRisjy'Hik, s,j)        (3) 

where H(k,s,j) is the measurement matrix and R{s,j) is the 
measurement covariance matrix corresponding to the sensor- 
target pair s-j. The new information also depends on target's 
detection probabilities corresponding to each sensor and the 
survival probability of the sensors. The new information ob- 
tained by sensor s about target j is reduced depending on this 
sensor's survivable probability. The modified information is 
given by 

Y{k,sJ)=ns{s)Y(k,8,j) (4) 
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where TTS(S) is the total survival probability of sensor s, 
which is equal to the product of survival probabilities of this 
sensor corresponding to each target. 

7Ts(s) = Jj7TS(s,j) (5) 

Let us assume that the target j is detected exactly by a set C 
of sensors. The probability of such an event is given by 

*D{c,j) = n*»(*.i)/(C,')(i-'rx>(«.i))x"'(0,') («) 
s 

where I(C, s) is an indicator given by 

if s€ C 
else (7) 

Total information gain when a target j is detected exactly by 
a set C of sensors is given by 

Y(k,c,j) = j2y(^s,j) (8) 

Hence considering all possible sets similar to C the updated 
information measure can be written as 

P^fclfc)"1    =    P,(fc|fc-l)-1+^7rD(C.j)y(A:,C,j) 
vc 

(9) 

vc 

Y,Ms)H(k,s,jYR(s,j)-1H(k,s,j) 
»€C 

(10) 

It can be shown that (10) reduces to 

Pfflk)-1   =  pj(k\k-iy1 + ^*S(S)*D(S, j) 
8 

•H(k,SJ)'R(sjrlH(k,s,j)      (11) 

Figure 1 shows a notional survival probability and detection 
probability vs. range between the target and the sensor. It is 
important to note that in a real life scenario the survival and 
detection probability depend on the terrain topography. 

The state vector of target j is given by 

v = [ x>    \PX    y?    vl ] (12) 

where x and y are the position components in cartesian coor- 
dinate and vx, vy are the velocity components. The approx- 
imate measurement matrix, which comprises of x-y position 
and radial velocity r, of target j corresponding to a sensor s, 
is given by 

H(k,s,j) = 
10 0 0 
0 0 10 
0   cos(a(s,j))    0   sin(a(s,j)) 

(13) 

where a(s, j) is the azimuth angle of the target j measured by 
sensor s. The original position measurement are in form of 

Figure I. Detection probability and survival probability 
w.r.t. range 

range r(s,j) and azimuth a(s,j) which are converted to x-y 
position using the standard conversion [1]. The measurement 
covariance matrix R{s,j) is given by 

R(s,j) = 
^1,1      #1,2       0 
#1,2      #2,2        0 

0 0 
(14) 

where 

#1,1 

#2.2 

#1,2 

r{s,j)2alsm(a(s,j))2 + ar?cos{a(s,j))?\5) 

r(s,j)2alcos(a(s,j))2 + a2sm{a(s,j))?\6) 

(a2-r{s,j)2crl)sm(a{s,j))cos{a(s,j)) 

(17) 

3. SEARCH TECHNIQUES 

In this work we have considered both gradient based search 
technique as well as randomized search technique to find the 
maxima of the criterion function. 

Newton-Raphson Method— The Newton-Raphson method is 
a deterministic technique in which one step update is given 
by 

snew = s - Q (Vs
2 J)     V.J (18) 

where s is a vector that denotes current x-y positions of the 
sensors, Vs J denotes the gradient of the criterion function 
w.r.t. s and 3 is a factor that is decided by a line search tech- 
nique. Thus, the Newton-Raphson method requires the first 
and second derivatives of the criterion function J w.r.t. x-y 
position of each radar. For each sensor-target pair s-t, the 
derivative of ys,t(fc) is first evaluated w.r.t. range r(s,t) and 
azimuth a(s, t) and then converted to derivatives w.r.t. the x- 
y position of the sensor. Using these derivatives V. J and 
V2 J are obtained. A detailed discussion of the procedure 
can be found in Appendix. Although the Newton-Raphson 
method produces very fast convergence, it fails in the pres- 
ence of local maxima, as is the case for the criterion function 



J. However, it can be very useful to refine the results of other 
algorithms, which is discussed later in this section. 

Genetic Algorithm—This is a randomized technique suitable 
for problems with multiple optimal points. To apply this al- 
gorithm in the current problem the positions of sensors are 
discretized to one meter resolution and converted to a bit 
string. A population size of 100 is used in this application. 
First generation is obtained randomly and next generations 
are obtained by crossover operation, which is applied sepa- 
rately on the x and y positions of each sensor. The parents 
are selected randomly depending on their fitness, which is a 
shifted version of the value of criterion function correspond- 
ing to the sensor positions indicated by the parent. Along 
with the crossover operation, the bits of the candidates in the 
next generation can also change due to mutation operation. In 
this application the mutation probability of each bit is 1/30. 
Elitism was used to preserve best parents in the next genera- 
tion. 

This algorithm eventually reaches the global maxima without 
being trapped by the local ones. However, rate of conver- 
gence of this algorithm slows down when it reaches close to 
the maxima. For fast convergence and to avoid the method 
being trapped by any local maxima we choose a combina- 
tion of the search techniques discussed above. Initial search 
is performed randomly using the genetic algorithm and then 
the best result of this search is used as the initial point for the 
Newton-Raphson method. 

4. RESULTS 

In this section we present the results obtained on two target 
scenarios using the search technique discussed in Section 3 
for the criterion function discussed in Section 2. Both of the 
target scenarios consist of two sets having three target each 
and one set having four targets. In the first type of scenario 
the target sets form a triangular shape (Figure 2) and in the 
second one the targets form a linear shape (Figure 6). In all 
scenarios the height of the sensors above the ground is con- 
sidered to be 1 km and the ground is considered to be flat. 
The measurement noise standard deviations are aT = 5 m, 
og = 1° and oy = 1 m/sec. To evaluate the criterion function 
a state prediction covariance matrix Pj(k\k — 1) is required 
for each target j. Steady state value of Pj(k\k — 1) can be 
used, which is obtained using the information filter form of 
Riccati equation given by 

p^ + iiz)-1   =  MQ-MQiMV + QQ)-1)'1^® 
(19) 

and 

Mi) (FM-^'WIi-i)-1 

*ec,-(0 
(20) 

where Cj(l) is the set of sensors that detects target j at time 
ti and F(l) is the transition matrix between time U to ti+\, 

which depends on the revisit time A/ = t;+1 — ti, is given by 

3(0- 
1 Aj   0 0 
0 10 0 
0 0     1 A( 

0 0     0 1 

(21) 

The process noise matrix Q(l) is obtained following a dis- 
crete white noise acceleration model 

Q(i) = w 
0 
0 

A? 
0 
0 

0 
0 

±A4 

2" 
iA? 

0 
0 

IA? 
A? 

(22) 

where af, is the variance of the white noise acceleration pro- 
cess. In our simulations crv = 0.5 m/sec. One important 
property of information form of Riccati equation is that the 
information from different sensors can be written in the sum- 
mation form as in (20). 
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Figure 2. Scenario for the calculation of the steady state 
prediction covariance matrix 

The steady state covariance matrix is obtained using the sce- 
nario shown in Figure 2. For simplicity it is assumed that the 
targets move in the same direction as the sensors and their 
relative position remains the same over time. The revisit time 
is assumed to be A; = 10 sec for all tt. The resulting steady 
state prediction covariance matrices are different for differ- 
ent target. It is also observed that the correlations between x 
component of position or velocity and y component of posi- 
tion or velocity vary in a wide range and can have both pos- 
itive and negative values. However, correlations between the 
position and velocity components of any particular direction 
(x or y) are very close to 1/3. The following steady state pre- 
diction covariance matrix, which shows an average behavior, 
was selected for each target 

Pi = 

102    ilO 
|10 

0 
0 

0 
0 

102 

0 
0 

hw 
(23) 



We can also observe the effect of a state prediction covariance 
matrix, which is far from the steady state, on optimal sensor 
positions. The following matrix is used for this purpose 

15 

Pi 

1002 {500 0 0 
{500 52 0 0 

0 0 1002 {500 
0 0 {500 52 

(24) 

The following two state prediction covariance matrices are 
used to obtain optimal sensor positions when variances are 
high in one direction (x or y) and low in another. 

Pz    = 

P4    = 

102 {10      0 0 
{10 l2        0 0 

0 0      1002 {500 
0 0      {-500 52 

1002 {500     0 0 
{500 52        0 0 

0 0       102 {10 
0 0       {10 V 

(25) 

(26) 

Figures 3-8 show the optimal sensor positions when the 
steady state prediction covariance matrix, which is shown in 
(23), is used in the criterion function. These figures show 
that for both scenarios the sensors concentrate near the largest 
group (particularly in Figures 3 and 4). Since in this case the 
predicted target state is highly accurate, some of the targets 
can be neglected while placing the sensors. Optimal target 
positions are presented in Figures 9-11 when state predic- 
tion covariance matrix, shown in (24), is used. This matrix 
represents much more noisy prediction than at steady state. 
Hence, none of the targets can be neglected in this case. Fig- 
ures 12-14 show optimal sensor positions when predictions 
are relatively bad in y direction as presented in (25). The fig- 
ures show that the sensors align along the y axis relative to 
the targets to get better position and velocity information in 
this direction. Opposite of this effect can be seen in 15—17, 
where due to relatively less predicted information along x the 
sensors align themselves along this direction. 

5. CONCLUSIONS 

In this paper an information theoretic approach for opti- 
mal GMTI sensor placement is presented. The sensors, 
that measure target's position along with its radial veloc- 
ity, are mounted on UAVs that are tracking a number of 
ground targets. Target's detection probability and sensor's 
survival probability are considered while developing the cri- 
terion function. A combination of randomized and nonran- 
domized techniques is used to find the optimal sensor loca- 
tions. Results are obtained for two scenarios each having 10 
targets and for different number of sensors. Also, different 
state prediction covariances are used to observe their effect. 
The overall track estimation accuracy should increase signif- 
icantly with this approach. The extension of this work to a 
dynamic scenario is under investigation. 
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Figure 4. Optimal position of 3 sensors for target scenario 1 
and steady state value of state prediction covariance 

6. APPENDIX 

In the following, the derivations required for the Newton 
Raphson method are presented. An approximation is made by 
assuming that the cross terms in the second derivative of the 
criterion function, related to two separate sensors, are all zero. 
This significantly reduces the computational requirements by 
allowing separate update for the sensors. For a sensor i one 
step update is given by 

Snew = si-/3(V2.J)""1VS,J (A.l) 

where s' is the current x-y position of the sensor 

si = [xi   y< ] (A.2) 
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and steady state value of state prediction covariance 
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Figure 8. Optimal position of 4 sensors for target scenario 2 
and steady state value of state prediction covariance 

The criterion function is given by 

./ = £los Pt{k\k-\yx +YJ*
:s(s)KD{s,t)Y(k,s,t) 

(A.3) 
Information of a target j obtained by a sensor i, assuming 
perfect detection and survival, is given by 

Y(k,i,j)    = H{k,i,j)'R{i,j)-lH{k,i,j) 

Yu     0     Fis     0 
o   Y22   o   r24 

Y13     0     Yaa     0 
o    Y2i   o    r44 

(A.4) 

where the components of matrix Y{k, i,j), obtained using 
(13) and (14), are given by 

„ r{iJ)2alcos(a{i,j))2 + a2sm{a{i,j))2
/^ 

111      =        1 .    -x2    o    2 tA->) 

Yx 
cos(a(i,j))7 

(A.6) 

r(i,])2alsm{a(t,j))2 + a2 cos(a(t,j))~ 
133     =       /•    -\o    o    o T.A./) 

(a2-r{i,j)2crl)sin(a(iJ))cos(a(i,j)) 
Jf 13    = ,•   .N2  2   > <~A'8' r(i,j)2fj2fj2 

Y>- 

sin(a(i,j))2 

cos{a{i,j))sin(a(i,j)) 

(A.9) 

(A.10) 
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1 and high value of state prediction covariance 

df + S, 

* 

+ 
J =-65.0152 

• 

O    targets 

GOO •    sensors 

15 
x(km) 

Figure 12. Optimal position of 4 sensors for target scenario 
1 and a state prediction covariance that has low value along 
i-direction and high value along y-direction 

The components can be expanded as 

The derivatives of the criterion function w.r.t. the x-y position 
of sensor i are given by 

v.<J  =   [ $£t $£ J 

v8
2.J  = 

a2j a2j 

Ti d2J 
dx'dy' dy'1 

(A. 12) 

£    =    E^Wli^l*)-1! 

dx 
£   =   £-\Pt{k\k)\* (^IPMk)-1))' 

dx 

d2J 
k-i. d 

(A. 13) 

+ J2\Pt(k\k)\—5\Pt(k\k)-1\ (A.14) 

(A")   ixW = Il-wwf^wr^r'Wr1] 
& 

+ Elp'(fclfc)l^r^il^(fclfc)"1l       <A15) dxidy 
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1 and a state prediction covariance that has high value along 
x-direction and low value along j/-direction 

where Pt(k\k) is given by 

Pt(rclfc)-1 = Pt{k\k-l)~l +J2*s(s)irD(s,t)Y(k,s,t) 

(A.16) 
the terms §~ and ^-^ are similar to (A. 13) and (A. 14), re- 

spectively. 
a» 

To obtain derivatives of the determinant of a matrix we need 
to compute derivatives of the matrix. First, these derivatives 
are obtained w.r.t. r(i, j) and a(i, j), which are the polar co- 
ordinates of target j considering sensor i as the origin. Next, 
these derivatives are converted to derivatives w.r.t. x* and y\ 
It is important to note that the detection and survival proba- 

bilities are independent of azimuth angle a. We have 

dPj(k\ky 

dr(ij) 

dPj(k\k)-1 

da(i,j) 

ns(i)irD(i,j) 
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+7rs(J) 
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..<97TD(i,j) 

dr(i,j) 
Y(k,i,j) 

+*D(iJ)£MY{k,i,j) 
ar(i,j) 

(A.17) 

=    nsd^DiiJ)9^:^    (A.18) 
da(i,j) 
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Figure 17. Optimal position of 4 sensors for target scenario 
2 and a state prediction covariance that has high value along 
x-direction and low value along y-direction 
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dr(i,j)     dr(i,j) 

dTTS(i) d-nD(i,3 

+2ws(0 

+2 
dr(i,j)  dr(i,j) 

Y(k,i,j) 

d2P}(k\k)~1 

da(i,j)2 

d2Pj{k\k)~1 

dr(i,j)da(i,j) 

dr(i,j)   dr{t,j) 

(A. 19) 
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da{i,j) 

d2Y(k,i,j) 

dr(ij)da(ij) 
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0 0 0 0 

8in(2q(ij)) 

o o 
o  - r(ij)»»2' 

0 0 

(A.22) 
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(A.25) 

2sin(2q(iJ)) Q        2 co»(2a(» J)) „ 

0 0 0 0 
2co«(2q(t,j)) 

0 0 0 () 
(A.26) 

The matrices 4 and 5 are symmetric and the nonzero com- 
ponents of these matrices are given by 

4(1,1)    = 

4(2,2)    =    - 

(a2 - r(i,j)2a2
a) sin(2tt(t,j)) 

r(hj)2(7l^2 

sin(2a(i,j)) 

(A.27) 

(A.28) 

(a2-r(i,j)2a2
a)sin(2a{i,j)) 

4(3,3)    =    -^  _/;..N?.,.9 (A.29) 
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(A.32) 

,      K           2(a2-r(i,j)2a2)cos{2a{i,j)) 
5(1,1)    =    -^ „,    .^a_a-a—i-i^(A.33) 
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2sin(2a(i,j)) 
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The derivatives w.r.t. x-y can be obtained using the following 
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The derivatives of ns{i, j) and nD(i,j) are depends on the 
choice of these functions. 

The partial derivatives of r(i, j)-a(i, j) w.r.t. x*-y* are given 
by 
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ABSTRACT 

With the recent advent of moderate-cost unmanned (or uninhabited) aerial vehicles (UAV) and their success in 
surveillance, it is natural to consider the cooperative management of groups of UAVs. The problem considered in 
this paper is the optimization of the information obtained by a group of UAVs carrying out surveillance of several 
ground targets distributed over a large area. The UAVs are assumed to be equipped with Ground Moving Target 
Indicator (GMTI) radars, which measure the locations of moving ground targets as well as their radial velocities 
(Doppler). In this research the Fisher information, obtained from the information form of Riccati equation, is used 
in the objective function. Sensor survival probability and target detection probability for each target-sensor pair are 
also included in the objective function, where the detection probability is a function of both range and range rate. 
The optimal sensor placement problem is solved by a genetic algorithm based optimizer. Simulation results on two 
different scenarios are presented for four different types of prior information. 

Keywords: Multisensor-multitarget tracking, sensor management, cooperative control, UAV placement, ground 
target tracking. 

1.  INTRODUCTION 

GMTI radars are used to make observations of moving targets with the objective of estimating the target states. 
Multiple sensors, which give different perspectives of one or more targets at the same time or at different times, 
can be used to enhance the estimation results. An important application of control theory is to manage multiple 
sensors such that the expected information obtained from them is maximized. Management of multiple sensors 
involves gathering, exchanging and combining information. When the sensor platforms are mobile, one has to decide 
the optimal placement of sensors. With the recent advent of affordable unmanned aerial vehicles (UAV) and their 
proven effectiveness in surveillance, it is natural to consider the cooperative management of groups of UAVs. 

A number of UAV management algorithms can be found in the literature. In [3] a hierarchical approach, which 
uses modified Voronoi diagram to generate possible paths and to intercept a number of known targets using a number 
of UAVs, is presented. Similar approaches can be found in [7, 8]. A search algorithm for targets in a given area is 
proposed in [5], where a discrete time stochastic decision model is formulated as the path planning problem, which 
is then implemented with a dynamic programming algorithm [9]. However, the aim of [5] is only to detect (not to 
track) the targets in the search region. In [4] a decentralized sensor management algorithm is presented based on the 
change in entropy. In this paper the Fisher information measure is used in the objective function in a target cuing 
and target hand-off problem and a multi-platform bearing only tracking problem. 

In a recent work [10] we have used a Fisher information based approach somewhat similar to [4]. Here the GMTI 
radars measure radial velocity as well as position of the targets. Also, the survival probability of a sensor from 
hostile fire by the targets and detection probability of a target corresponding to a particular sensor are considered. 
In [10] the detection probability of a target by a radar is assumed to be dependent only on the range. However, for 
GMTI radar the detection probability is a function of both range and range rate. In this paper the corresponding 
modification is done and it is found that target heading, which can change the range rate in an otherwise constant 
target-sensor geometry, influences the optimal sensor position. Development of the objective function is discussed in 
Section 2. In Section 3 a genetic algorithm to find the maximum of the objective function is discussed. Simulation 
results are presented in Section 4. 

•Proc. of SPIE Conf. on Signal Processing, Sensor Fusion, and Target Recognition (#5429-10), Orlando, FL, April 2004. 



2. OBJECTIVE FUNCTION 
The objective function, based on the Fisher information measure is the product of uncertainty volumes [10] 

J = ^log|PJ(fc|/c)-1| (1) 
j 

where Pj(k\k) is the posterior covariance matrix of the state vector corresponding to target j at time tk and can be 
written in terms of the state prediction covariance Pj(k\k — 1) and new information Yj(k) as follows [1] 

Pjiklk)-1 = P3(k\k - l)"1 + Yj(k) (2) 

The matrix Yj{k) is the total new information about target j obtained by the different sensors. The information 
obtained by a particular sensor s about target j is given by 

Y(k,s,j) = H^sjyR^sjr'H^sJ) (3) 

where H(k,s,j) is the measurement matrix and R(k,s,j) is the measurement covariance matrix corresponding to 
the sensor-target pair s,j. The new information also depends on the target's detection probabilities corresponding 
to each sensor and the survival probability of the sensors. The new information obtained by sensor s about target j 
is reduced depending on this sensor's survival probability. The modified information is given by 

Y(k,sJ)=irs(s)Y(k,s,j) (4) 

where 7rs(s) is the total survival probability of sensor s, which is equal to the product of survival probabilities of this 
sensor in view of each target, i.e., 

j 

Let us further assume that target j is detected exactly by a set C of sensors. The probability of such an event is 
given by 

*D(CJ) = Y[*D{sJ)nC'a)(l -*z>(S,j))
1-'(C'',) (6) 

S 

where nD(s,j) is the detection probability of target j by sensor s and I(C, s) is an indicator function given by 

The total information gain when target j is detected exactly by a set C of sensors is given by 

mc,j) = £y(M,;) (8) 
.sec 

Hence, considering all possible sets, similar to C, the updated information matrix can be written as 

Pi{k\k)-X    =   P]{k\k-l)-l+Y.nD{C,j)Y{k,C,j) (9) 
vc 

=    PJ(k\k-l)-1+^D(CJ)Y/^s(s)H(k,S,j)'R(k,sJ)-1H(k,sJ) (10) 

It can be shown that (10) reduces to 

PjOfcl*)-1     =    P7(/c|fc-l)-1+^7rs(s)7rD(s,j)7/(fc,S,j)'i?(fc,5,j)-1//(A;,s,j) (11) 

The state vector of target j is taken as 

x = [ aJ    4    y>    v{ ] (12) 



Figure 1: Detection probability and survival probability w.r.t. range. 

where x and y are the position components in Cartesian coordinate and vx, vy are the velocity components. The 
approximate measurement matrix, which comprises x-y position and radial velocity f, of target j corresponding to 
sensor s, is given by 

"1 0 0 0 
H(k,s,j) =     0 0 10 (13) 

0    cosa(k,s,j)    0    sina(fc, s,j) 

where a (A;, s, j) is the azimuth angle of the target j measured by sensor s at time tk- The original position measure- 
ments are in the form of range r(k, s,j) and azimuth a(k, s,j) which are converted to x,y position using the standard 
conversion [1]. The measurement covariance matrix R(k,s,j) is given by 

where (skipping the arguments) 

R(k,s J) = 
•Ri,i   -Ri,2    0 

i?l 2      R-2 2       0 
0        0      a? 

•Ri.i 
2    1    •        1           1             1 =    r aasma   + ar cos a 

R-1.2 
2    2               2            2*2 =    r cr* cos or + o* sin or 

R\.2 =    (o 
2           2    2\    • * — raj) sin a cos a 

The detection probability of target j by sensor s can be approximated as 

(14) 

(15) 

(16) 

(17) 

(18) 

where Kl
D{s,j) is the detection probability as a function of the range and ff%{s,j) is the detection probability as a 

function of the range rate. The nature of the first term is shown in Figure 1 and the derivation of the second term 
is discussed in the following. 

For a GMTI radar if, the magnitude of the measured value of the range rate for a target falls below a threshold 
rmjn then the target will not be detected. Hence, ^(s, j) is given by 

K
2

D(
S
J) = 1 -p{-*iam <Hk,s,j) <rmin | f{k,s, j\k - 1), ^{k,s,j\k - l)2} 

where r(k, s,j) is the measured range rate and r(k, s,j\k — 1) is the predicted range rate given by 

r(k,sj\k- 1) = vl(k\k - l)cos a(k,s, j\k - l) + i^(fc|fc - 1) sin a(fc,s, j, \k - 1) 

(19) 

(20) 



here vi.(k\k — 1), v^(k\k — 1) are the components of predicted velocity and a(k, s,j, \k — 1) is the predicted azimuth 
angle for target j. 

The variance term ar{k,s, j\k — l)2 in (19) is the range rate measurement prediction variance which is the third 
diagonal term of the innovation covariance matrix 

S(k,s,j) = H(k,s,j)PJ(k\k-l)H(k,s,jY + R(k,s,j) (21) 

where in H(k, s,j) the measured azimuth angle a(k, s,j) is replaced by the predicted azimuth angle a(k, s,j\k — 1). 

Hence -K
2

D{S, j) in (19) is evaluated by integrating a Gaussian density with mean r(k, s,j\k — 1) and variance 
ar(k, s,j\k - l)2 in the interval -rmm to rmm and subtracting the result from unity. 

Figure 1 shows a notional survival probability and detection probability vs. range between the target and the 
sensor. It is important to note that in a real life scenario the survival and detection probability depend on the terrain 
topography. 

3. SEARCH TECHNIQUES 

In this work we have used a genetic algorithm to find the global maximum of the objective function. This is a 
randomized technique suitable for problems with multiple maxima. To apply this algorithm in the current problem, 
the positions of sensors are discretized to 1 meter resolution and converted to a bit string. A population size of 100 
is used in this application. First generation is obtained randomly and next generations are obtained by a crossover 
operation, which is applied separately on the x and y positions of each sensor. The parents are selected randomly 
depending on their fitness, which is the value of the objective function corresponding to the sensor positions indicated 
by the parent. Along with the crossover operation, the bits of the candidates in the next generation can also change 
due to mutation operation. In this application the mutation probability of each bit is 1/30. Elitism was used to 
preserve best parents in the next generation. Although its rate of convergence slows down close to the maxima, this 
algorithm eventually reaches the global maximum without being trapped by the local ones. 

4. RESULTS 

In this section we present the results obtained on two scenarios using the search technique discussed in Section 3 for 
the objective function discussed in Section 2. Both scenarios consist of two sets having three targets each and one set 
having four targets. In the first scenario the target sets form a triangular shape (Figure 2) and in the second one the 
targets form a linear shape (Figure 6). Three types of target velocities are considered, the components of velocity are 
[0, -10]m/s, [10, 0]m/s and [5>/2, -5\/2]m/s and will be referred as type 1, type 2 and type 3, respectively. In all 
scenarios the height of the sensors above the ground is considered to be 1 km and the ground is considered to be flat. 
The measurement noise standard deviations are ar = 5 m, oo = 1° and o> — 1 m/s. The minimum detectable range 
rate rmm is taken to be 2 m/s for this simulation. To evaluate the objective function a state prediction covariance 
matrix Pj(k\k — 1) is required for each target j. The steady state value of Pj(k\k — 1) can be used, which is obtained 
using the information filter form of Riccati equation given by 

Pj(l + 1IZ)-1 = Aj(l) - Atf) {Aj(l) + Qil)-1)'1 AjQ) C22) 

and 

Aj(l)    =    (F(Z)-1)'(P,(Z|Z-1)-1 

+   £   H(l,s,j)'R(s,j)-lH(l,s,j))F(irl 

•€C,(Q 

(23) 

where C>(Z) is the set of sensors that detects target j at time ti and F(l) is the transition matrix between time ti to 
U+i, which depends on the revisit time A; = ti+i — U, is given by 

^(0 = 

1 A,    0 0 
0 10 0 
0 0     1 A; 
0 0     0 1 

(24) 



The process noise matrix Q(l) is obtained following a discrete white noise acceleration model 

Q(i) = 

±A4 

i ' 
I A3 

0 
0 

lAf 0 0 

A? 0 0 
0 JA? I A3 

2aJ 
o    |A?   A? 

(25) 

where cr2 is the variance of the white noise acceleration process. In our simulations av = 0.5 m/s2. One important 
property of the information form of Riccati equation is that the information from different sensors, if they are 
independent, can be written in the summation form as in (23). 

x(km) 

Figure 2: Scenario for the calculation of the steady state prediction covariance matrix. 

The steady state covariance matrix is obtained using the scenario shown in Figure 2. For simplicity it is assumed 
that the targets move in the same direction as the sensors and their relative position remains the same over time. 
The revisit interval is assumed to be A; = 10 sec for all tj. The resulting steady state prediction covariance matrices 
are different for the different targets. It is also observed that the correlations between the x component of position or 
velocity and the y component of position or velocity vary and can have both positive and negative values. However, 
correlations between the position and velocity components of any particular direction (x or y) are very close to 1/3. 
The following steady state prediction covariance matrix, which shows an average behavior, was selected for each 
target 

Pi = 

102 10 
a 0 0 

10 1 0 0 
0 0 102 10 

3 
0 0 10 

T 1 

(26) 

We also evaluate the effect of a state prediction covariance matrix, that is far from the steady state, on the optimal 
sensor positions. The following matrix is used for this purpose 

P2 = 

1002 

500 
3 
0 
0 

500 

532 

0 
0 

0 
0 

1002 

500 
3 

0 
0 

500 (27) 

Figures 3-5 show the optimal positions of three sensors for the first target scenario and a low predicted covariance 
Pi in (26). It can be seen that the optimal sensor positions depend on the headings of the targets. Also, the closest two 
sensors form a close to right angle triangle formation at each target so that they obtain complimentary information 
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Figure 4: Optimal position of three sensors for target scenario 1 with a low state prediction covariance and velocity 
type 2. 

about the target. There is also a tendency for the sensors to concentrate on the group of four targets as this increases 
the obtainable information. 

Figures 6-8 show the similar nature of the optimal positions of three sensors for the second target scenario. 
However, in each of these cases, due to symmetry, a mirror image of sensors w.r.t. the targets along the x axis 
produces another set of optimal sensor positions. In Figure 8 the sensors abandon the three targets at the bottom 
and get the information about the rest of the targets. 

Figure 9 shows optimal positions of three sensors with targets from the second scenario and each of them having 
velocity type 3. The difference from Figure 8 is that in this case the targets have a high prediction covariance P2 as 
shown in (27). Because of this high prediction uncertainty the sensors are placed more uniformly from the targets 
compared to those in Figure 8. 

Finally, Figures 10 and 11 show the optimal positions of two sensors for the targets of scenario 1 moving along 
the negative y direction. A low prediction covariance matrix Pi is used for the first figure, while a high prediction 
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Figure 5: Optimal position of three sensors for target scenario 1 with a low state prediction covariance and velocity 
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Figure 6: Optimal position of three sensors for target scenario 2 with a low state prediction covariance and velocity 
type 1. 

covariance matrix P? is used in the second case. Similar to the previous observations, the sensors in the second case 
place themselves more uniformly w.r.t. the targets. 

5.  CONCLUSIONS 

In this paper a Fisher information based approach for optimal GMTI sensor placement is presented. The sensors, 
which measure targets' position along with its radial velocity, are on UAVs that are tracking a number of ground 
targets. The target detection probability and sensor survival probability are considered while developing the objective 
function. The target detection probability depends on the target range as well as range rate. A genetic algorithm 
based search techniques is used to find the optimal sensor locations. Results are obtained for two scenarios each 
having 10 targets and for different number of sensors. Also, different state prediction covariances and velocity 
directions are used to observe their effect. The overall track estimation accuracy should increase significantly with 
this approach. The extension of this work to a dynamic scenario is under investigation. 
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Abstract—With the recent advent of moderate-cost unmanned 
(or uninhabited) aerial vehicles (UAV) and their success in 
surveillance, it is natural to consider the cooperative manage- 
ment of groups of UAVs. The problem considered in this 
paper is the optimization of the information obtained by a 
group of UAVs carrying out surveillance of several ground 
targets distributed over a large area. The UAVs are assumed 
to be equipped with Ground Moving Target Indicator (GMTI) 
radars, which measure the locations of moving ground tar- 
gets as well as their radial velocities (Doppler). In this pa- 
per, a cooperative control algorithm is proposed, according to 
which each UAV decides its path independently based on an 
information theoretic criterion function. The criterion func- 
tion also incorporates target detection probability and survival 
probability for sensors corresponding to hostile fire by targets 
as well as collision with other UAVs. The control algorithm 
requires limited communication and modest computation. 
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1. INTRODUCTION 

An important application of control theory is to manage mul- 
tiple sensors such that the expected information obtained 
from them is maximized. Management of multiple sen- 
sors involves gathering, exchanging and fusing information. 
With the recent advent of affordable unmanned aerial vehi- 
cles (UAV) and their proven effectiveness in surveillance, it 
is natural to consider the cooperative management of groups 
of UAVs. 

A number of UAV management algorithms can be found in 
the literature. In [3] a hierarchical approach, which uses a 
modified Voronoi diagram to generate possible paths and to 
intercept a number of known targets using a number of UAVs 
in the presence of dynamic threats, is presented. Similar ap- 
proaches can be found in [8], [9]. A search algorithm for 
targets in a given area is proposed in [6], where a discrete 

time stochastic decision model is formulated as the path plan- 
ning problem, which is then implemented with a dynamic 
programming algorithm [11]. However, the aim of [6] is 
only to detect (not to track) the targets in the search region. 
In [5] a decentralized sensor management algorithm is pre- 
sented based on maximizing information gain. In this pa- 
per, a online bargaining arrangement between the sensors was 
used to decide assignment of known targets in two different 
sensor management problems. The first one addresses a tar- 
get cueing and hand-off problem related to static sensors and 
dynamic targets, while the second problem is to generate a 
coordinated sensor-platform trajectory to obtain information 
about static features (targets). Another algorithm, presented 
in [10], uses a coordination framework of virtual bodies and 
artificial potentials for cooperative control of mobile sensor 
networks. This algorithm focuses on "gradient climbing mis- 
sions in which the mobile sensor network seeks out local 
maxima or minima in the environmental field". 

In this paper, a cooperative control algorithm is developed for 
a number of UAVs, equipped with GMTI sensors, tracking 
multiple ground targets. An information theoretic criterion, 
somewhat similar to [5], is used to select the future path of an 
UAV such that the total information, obtainable by the sen- 
sors in the UAVs as a group, corresponding to the detected 
targets, is maximized. The algorithm proposed in this paper, 
unlike the one in [5], assumes no prior information about the 
number of targets or their positions. The criterion function 
used in this paper, which was partly presented in [12], takes 
into account the detection probabilities of targets, which are 
based on both range and range rate, and survival probabili- 
ties of the sensors due to hostile fire from targets and possible 
collision with other UAVs, in computing the information for 
a particular target-sensor geometry. The simulation results 
show that the algorithm enables a group of UAVs to gather 
information in a cooperative manner in the region of interest. 
The algorithm can incorporate initial information if available; 
however, it can also work without any initial knowledge. This 
adaptive algorithm can account for new targets as they appear. 
The computational complexity and communication require- 
ments of this algorithm are modest enough for the realtime 
applications related to small UAVs with limited computing 
power. Finally, because of its distributed approach the algo- 
rithm is robust and hence, it does not fail in the eventuality of 
the loss of some UAVs or communication failure. 
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The paper is organized as follows. Development of the ob- 
jective function is discussed in Section 2. In Section 3 the 
cooperative control algorithm is described in detail. Simula- 
tion results are presented in Section 4 and Section 5 presents 
the concluding remarks. 

2. OBJECTIVE FUNCTION 

The objective function, based on the Fisher information mea- 
sure is the product of uncertainty volumes [12] 

J = ^log|Pi(*|*)-1| (1) 

where Pj(k\k) is the posterior covariance matrix of the state 
vector corresponding to target j at time tk and can be written 
in terms of the state prediction covariance Pj(k\k—l) and the 
new information Y, (k, s) obtainable by the sensors (UAVs) as 
follows [1] 

Pj(k\k)-1    =    PJ(k\k-l)-1+Y/^s(s)7rD(sJ)Yj(k,s) 
s 

(2) 

where TTD(S,J) is the detection probability of target j by UAV 
s. This probability can be expressed as 

*D{s,j) = 'KlD{s,j)it2
D{s,j) (3) 

where TK
X

D(s,j) is the detection probability as a function of 
the range and n2

D{s, j) is the detection probability factor as a 
function of the range rate. The nature of the first term is dis- 
cussed in Section 4. The second term is the probability that 
the range rate measured by the GMTI sensor is higher than the 
"minimum detectable velocity" (MDV) and the correspond- 
ing computation is available in [12]. The term ns(s) in (2) is 
the total survival probability of UAV s, which is equal to the 
product of target-fire survival probability 7r^(s) and collision 
survival probability 7r|(s) of this UAV, i.e., 

*s{s) = 7r^(s)7r|(s) (4) 

where ^(s), in turn, is the product of target-fire survival 
probabilities of UAV s in view of each target, i.e., 

**M-!!**<••*> (5) 

and TT|(S) is the product of collision survival probabilities 
corresponding to all other UAVs 

«i(*) = ] I *s(s- (6) 
i,i^s 

The information Yj(k,s) obtained by a particular UAV s 
about target j is given by 

Yjfas) = !J(M,j)'Ji(*>a,irxJ*(*,«,i)       (?) 

where H(k,s,j) is the measurement matrix and R(k,s,j) 
is the measurement noise covariance matrix corresponding to 
the sensor-target pair s, j. 

In this work, the UAVs are assumed to be equipped with 
GMTI sensors and the state vector of target j is taken as 

*=[ .'/•' «j (8) 

1 0            0 0 
0 0            1 0 
(1 cos a(k,s,j)    0 sina{k,s,j) 

where x and y are the position components in Cartesian co- 
ordinate and vx, vy are the velocity components. The mea- 
surement vector comprises x-y position and radial velocity r. 
The measurement matrix, of target j corresponding to sensor 
s, is given by 

H(k,s,j) = 

(9) 
where a(k, s,j) is the azimuth angle of the target j measured 
by sensor s at time tk. The original position measurements 
are in the form of range r(k, s,j) and azimuth a(k, s,j) in 
the presence of noise, which are converted to x,y position 
using the standard conversion [1]. The original position mea- 
surements in range, azimuth angle and range rate contains 
independent additive Gaussian noise and the corresponding 
noise variances are given by a2, a2 and a2, respectively. Af- 
ter conversion, the measurement covariance matrix R(k, s,j) 
is given by 

R(k,s,j) = 

where (skipping the arguments) 

#1,1 #1,2 0 
#1,2 #2,2 0 

0 0 a'i 

#1,1    =    r2cr2 sin a2 + ar cos a2 

i?2,2    =    r a-2^ cos a2 + cr2 sin a 

#1,2    =     (<r2 — r2a2)sinacosa 

(10) 

(11) 
(12) 

(13) 

As shown in [13] one can use in (9) the observed azimuth. 

3. ALGORITHM 

In this section, the algorithm followed by each UAV, which 
results in cooperative control of the UAVs as a group, is dis- 
cussed in detail. Each UAV performs the tasks shown in Fig- 
ure 1 asynchronously w.r.t. the other UAVs. Each UAV scans 
its environment using a GMTI sensor at an interval of T. The 
detections, along with this UAVs current position and veloc- 
ity, are then transmitted to the other UAVs. There is a jre 

probability that another UAV will receive this transmission. 
Each UAV maintains its own set of target tracks, which are 
updated when a new set of detections is either obtained by 
this UAV or received from another UAV. 

After scanning for measurements, transmitting them and up- 
dating the target tracks, each UAV determines its path for the 
next interval T. For a coordinated operation this decision de- 
pends on the corresponding UAVs knowledge about the cur- 
rent locations of the other UAVs and the current state of the 
target tracks maintained by it. The criterion function J in (1) 



t =time 

Scan for measurements 

Transmit measurements 
and ownship state 

T 

Figure 1.  Flow chart of the tasks of each UAV. 

is maximized to obtain the paths of the UAVs. The knowledge 
of the state of another UAV is updated when information is re- 
ceived from that UAV. In case of a failure in communication, 
the path decided for the particular UAV in the last iteration is 
assumed to be its actual path. If no information is received 
from a particular UAV for a number of times, the correspond- 
ing UAV is considered to be lost. 

After setting its course for next interval T each UAV then 
waits for any transmission from the other UAVs as shown 
in Figure 1. If a new set of detections is received from an- 
other UAV, then the target tracks, maintained by this UAV, 
are updated. After T seconds the UAV once again scans its 
environment with its GMTI sensor and so on. 

4. RESULTS 

In this section, we present the simulation results obtained for 
a scenario which has 10 targets moving in three groups as 
shown in Figure 4. The first group has 4 targets and the other 
two have 3 targets each. The separation between the targets 

in each group is 70 m. The target groups move in different 
directions. 

The number of UAVs considered for different cases is from 
2 to 4 and each of them starts at y position of — 12 km while 
keeping a distance of 1 km from the closest ones along the 
x direction. Initially, the UAVs move at a rate of 30 m/s 
along the +y direction. The UAVs start with no knowledge 
about the targets and continue in the +y direction until target 
tracks are formed. Once target measurements are obtained 
and tracks are formed, each UAV decides its path by maxi- 
mizing J in (I) based on its knowledge of the positions of the 
other UAVs and target tracks maintained by the correspond- 
ing UAV. Each UAV repetitively performs a set of operations 
as discussed in Section 3. For this simulation, T is 5 s, which 
means each UAV performs the set of tasks shown in Figure 1 
within that time. Also, the success probability of a communi- 
cation between two UAVs, which is denoted by TTC in Section 
3, is 0.9. In this simulation one point track initialization [13] 
is applied and track maintenance is performed by a two stage 
procedure: measurement to track association, which is per- 
formed by the auction algorithm [4], and track update using 
a Kalman filter. A white noise acceleration model is assumed 
for the targets with process noise standard deviation (s.d.) 
being 1 m/s2. The measurement noise s.d. are ar = 5 m, 
ag = 10~3 rad and oy = 1 m/s. The probability of false 
alarm in this simulation is 10~6 (in a resolution cell of size 
20 m x 4mrad x 4 m/s). 

Commonly for the tracking algorithms presented in the lit- 
erature, a track is deleted if it is not associated with mea- 
surements for more than a predetermined number of updates. 
However, this rule is not based on the observability criterion 
and may result in deletion of tracks because they are unob- 
servable by the sensors used. To avoid this, in this work, a 
quantity ^track 's "P^ted each time a set of detections is re- 
ceived, as follows 

^trackC1 +l) -{" •ack(fc)(1 - VD) 
1 

if not associated 
otherwise 

(14) 
where ITD is the probability of detection of the particular 
track. If TTtrack ^s De'ow a predetermined fraction, 10~3 

in this simulation, the track is deleted from the track list. 

In this simulation, the altitude of the UAVs above the ground 
is considered to be 1 km and the ground is considered to be 
flat. The UAVs fly at a constant speed of 30 m/s and can per- 
form coordinated turns with angular turn rate upto 3°/s. To set 
its path for the next period, each UAV decides its angular turn 
rate by maximizing J in (1). Since J also includes the angular 
turn rates of the other UAVs, these quantities are also deter- 
mined in a joint maximization procedure. Matlab function 
'fmincon' is used to perform this constrained optimization. 
The angular turn rates of the other UAVs are not transmitted 
as each UAV performs this operation independently. 

Figure 2 shows the survival probabilities and detection proba- 
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Figure 2. Detection and survival probabilities assumed in 
this simulation. 

bility as a function of range, as used in this simulation. It can 
be seen that the survival probabilities increase as the target- 
sensor distance and sensor-sensor distance increase. How- 
ever, the detection probability w.r.t. range increases as the dis- 
tance between target-sensor decreases. It is important to note 
that in a real life scenario the survival and detection probabil- 
ities depend on the terrain topography and the algorithm pro- 
posed in this work is applicable for any assumption on these 
probabilities. The detection probability factor as a function 
of the range rate of a target w.r.t. a sensor is a step function 
being 1 if the target range rate magnitude is more that 2 m/s 
and 0 otherwise. 

x(km) 

Figure 3. Contour plot of criterion function w.r.t. different 
position of a fourth UAV. 

Figure 3 shows the contour plot of the criterion function for 

different positions of the fourth UAV in a scenario that has 3 
UAVs tracking 10 targets. The criterion function drops near 
the targets or the sensors forming a barrier. The reason of 
this behavior is the very low survival probability of the fourth 
UAV close to the targets or other sensors. Farther from the tar- 
gets, there are local minima in the direction of target motion. 
The global minimum is near the center of the plot between 3 
targets groups. 

15 20 25 30 35 41 

x (km) 

Figure 4. A typical set of paths for 2 UAVs when tracking 
10 targets. 
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Figure 5. 20 run position RMSE for tracks maintained 
separately by 2 UAVs. 

Figure 4 shows a typical set of paths of UAVs when only two 
of them are present. It can be seen that UAV 1 tracks target 
group 1 and UAV 2 tracks target groups 2 and 31. The par- 
ticular attention to group 1 can be explained by the fact that 

1 None of the UAVs are assigned to a particular target group. However, they 
can move to a particular target group if that maximizes the total information 
and in doing so the other groups go out of its detectable range. 
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Figure 8.  20 run position RMSE for tracks maintained 
separately by 3 UAVs. 

this group has 4 targets, one more than the other groups. Fig- 
ures 5 and 6 show a 20 run position and velocity RMSE of 
the tracks maintained separately by the two UAVs. Since the 
UAVs start close to target Group 2, these targets are detected 
first and the RMSEs of the corresponding tracks decrease as 
the UAVs start moving in their direction. However, once other 
targets are detected, the UAVs start moving towards them and 
the RMSEs of the tracks corresponding to target group 2 in- 
crease and that for the other groups decrease. At the end of 
the simulations, the tracks corresponding to target group 1 
have minimum position and velocity RMSE. 
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Figure 7. A typical set of paths for 3 UAVs when tracking 
10 targets. 

Figure 7 shows a typical set of paths of 3 UAVs when track- 
ing the ten targets of the target scenario. In this case, UAV 2 
tracks target group 1 and UAV 1 tracks target groups 2 and 3, 
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Figure 9. 20 run velocity RMSE for tracks maintained 
separately by 3 UAVs. 

while UAV 3 pays attention to all three target groups. Figures 
8 and 9 show a 20 run track position and velocity RMSE when 
the targets are tracked by 3 UAVs. Once again, target group 2 
is detected first and the corresponding tracks have lower po- 
sition and velocity RMSE in the first part of each simulation. 
However, once the other targets are detected, the UAVs start 
moving towards them. Finally, the tracks from target group 
1 have the highest position accuracy and all tracks have ve- 
locity error of the similar magnitude. The overall RMSE of 
these tracks are considerably smaller than those of the tracks 
formed by two UAVs. 

Figure 10 shows a typical set of paths of 4 UAVs when track- 
ing the ten targets of the scenario. In this case, UAV 1,2 and 4 



Figure 10. A typical set of paths for 4 UAVs when tracking 
10 targets. 
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Figure 12. 20 run velocity RMSE for tracks maintained 
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Figure 11. 20 run position RMSE for tracks maintained 
separately by 4 UAVs. 
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Figure 13. A typical set of paths for 3 UAVs before UAV 3 
is lost when tracking 10 targets. 

tracks one group each and UAV 3 stays in between and looks 
over all groups. Figures 11 and 12 show a 20 run position and 
velocity RMSE of the tracks corresponding to the ten targets. 
In this case, both of the RMSEs are even smaller. These fig- 
ures show that at the final stage of the runs target set 3 gets 
less attention from the UAVs as they concentrate their efforts 
on the tracks corresponding to the other two target groups 
which are close to each other. 

Figure 13 shows the path of the targets and 3 UAVs for the 
first 25 minutes of a typical simulation. In this case, UAV 1 
is tracking target groups 2 and 3, UAV 2 is tracking all target 
groups and UAV 3 is tracking target group 1. UAV 3 is lost at 
25 minutes and Figure 14, which is the continuation of Figure 

13, shows the path of the remaining UAVs and targets after 
UAV 3 is lost. The end of the UAV paths in Figure 13 and 
the beginning of the paths in Figure 14 are marked by small 
circles. From Figure 14 it can be seen that in the absence of 
UAV 3, UAV 2 moves towards target group 1 and it simul- 
taneously tracks target group 2, while UAV 1 keeps tracking 
target groups 2 and 3. Figures 15 and 16 show the position 
and velocity RMSE of the tracks maintained separately by 
the UAVs. It can be seen that the position and velocity RMSE 
increase after UAV 3 is lost. 

Figure 17 shows a typical path of 3 UAVs when the target-fire 
survival probabilities of the UAVs are not considered in the 
criterion function. In this simulation, the minimum distance 
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Figure 16. Velocity RMSEs for targets when tracked by 3 
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Figure 17. A typical path set of three UAVs while tracking 
targets of the scenario and when target-fire survival 

probability is not considered in the criterion function. 

between a target and an UAV is less than 3 m, which may 
be fatal if the targets are hostile. This shows the importance 
of considering target-fire survival probability for a practical 
use of information theoretic approach. When this probability 
is considered the minimum value of target-sensor distance is 
always more than 1000 m. 

Usually, the UAVs do not come close to each other, as such 
a configuration is not favorable for maximizing information. 
However, in certain situations, UAVs can cross each other's 
path and while doing so they might come very close, resulting 
in a collision. In this work, this possibility is avoided by using 
the collision survival probability in the criterion function in 
(1). 

5. CONCLUSIONS 

In this paper, a novel cooperative control algorithm, for a 
number of UAVs tracking multiple targets, is presented. An 
information theoretic approach is used for the path selection 
by the UAVs, which incorporates target detection probability 
and UAV survival probabilities due to hostile fire by targets 
and, also, due to collision with other UAVs. 

A scenario of 10 targets, which moves in three groups, is sim- 
ulated and 2-4 UAVs were deployed to track them, in differ- 
ent cases. The results show that the cooperative control al- 
gorithm enables the UAVs to maintain almost similar average 
accuracy for different tracks and, also, the position and ve- 



locity RMSE for all tracks decrease as the number of UAVs 
increase. The robustness of this algorithm in the face of an 
UAV loss and importance of different probabilities in the cri- 
terion function are also demonstrated. 

Currently, a joint maximization routine is used to find out the 
paths of the UAVs. This can be computationally expensive 
if the number of targets and UAVs increase. For this reason, 
a prospect of using gradient directions as the directions of 
motions of the UAVs is being investigated. Also, imposing 
more constraints on sensors' ability to observe will be another 
future direction of our work. 
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ABSTRACT 
With the recent advent of moderate-cost unmanned (or uninhabited) aerial vehicles (UAV) and their success in 
surveillance, it is natural to consider the cooperative management of groups of UAVs. The problem considered 
in this paper is the optimization of the information obtained by a group of UAVs carrying out surveillance — 
search and tracking — over a large region which includes a number of targets. The goal is to track detected 
targets as well as search for the undetected ones. The UAVs are assumed to be equipped with Ground Moving 
Target Indicator (GMTI) radars, which measure the locations of moving ground targets as well as their radial 
velocities (Doppler). In this paper, a decentralized cooperative control algorithm is proposed, according to which 
the UAVs exchange current scan and detection information and each UAV decides its path separately based on 
an information based objective function that incorporates target state information as well as target detection 
probability and survival probability for sensors corresponding to hostile fire by targets and collision with other 
UAVs. The proposed algorithm requires limited communication and modest computation and it can handle 
failure in communication and loss of UAVs. 

Keywords: Multisensor-multitarget tracking, sensor management, cooperative control, UAV placement, ground 
target tracking. 

1. INTRODUCTION 

An important application of control theory is to manage multiple sensors such that the information obtained 
from the surveillance region is maximized. Management of multiple sensors involves gathering, exchanging 
and fusing information. With the recent advent of affordable unmanned aerial vehicles (UAV), a considerable 
amount of research effort has been directed toward mobile sensor management, which also includes path planning. 
The advantages of UAVs include removal of the risk to human operators, lower cost, smaller size/weight, greater 
maneuverability and possibility of effective coordination. For these reasons, in future, UAVs would be extensively 
used in surveillance, search/rescue, communication and other military and civilian applications. 

A number of UAV management algorithms can be found in the literature. In [13] a cooperative control algo- 
rithm for multiple UAVs to simultaneously reach a predetermined target location, which maximizes survivability 
of the UAVs due to exposure to threats while adhering to fuel constraint, is addressed. A hierarchical decision 
mechanism is proposed in which at team level the estimated time until arrival is computed and at UAV level 
path planning is performed. In [3] a similar approach, which include Voronoi diagram in path planning, is used 
for the simultaneous intercept problem in the presence of dynamic threats. Similar approaches can be found in 
[6, 11, 14]. In [9] another hybrid control structure is proposed for the simultaneous intercept problem. Here, 
UAV-to-target allocation and time to reach the targets are decided in the central node, while the path decisions 
are taken locally in UAVs. 

In [15] a multi-vehicle path planning problem in hostile environment is solved by dynamic programming. 
In this centralized algorithm path decisions are taken in terms of connecting pre-defined way-points. In [16] a 
decentralized cooperative search algorithm is proposed in which UAVs exchange environment information but 
independently decides their paths by minimizing a convex combination of costs associated with subgoals. It can 
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be noted that for UAV management problems decentralized algorithms is preferred as they have advantages of 
graceful degradation, scalability and modularity properties over the centralized ones. In [8], for a search problem, 
dynamic programming is used to make finite horizon decisions. Note that our problem includes search as well 
as tracking. 

In [7] a decentralized sensor management algorithm, based on maximizing information gain, is presented. In 
this paper, an online negotiation arrangement between the sensors is used to decide the assignment of known 
targets to generate a coordinated sensor-platform trajectory for obtaining information about static features 
(targets). In [5] a decentralized multi-UAV search algorithm, for a lost vehicle in stationary state, is proposed. 
This algorithm is synchronous, according to which each UAV negotiates with others by communicating the 
expected measurement likelihood for its best path given the measurement likelihood of other UAVs. 

In our previous work [17], which describes a UAV placement algorithm, a preliminary version of the objective 
function, which is used for UAV path planning in the current work, is presented. However, in [17] only previously 
detected targets are considered in the objective function as the goal of this algorithm is tracking, not searching. 
An extension of this paper for the dynamic tracking scenario is presented in [18]. Here, too, searching for new 
target was not the goal. Also, the UAVs are considered to be able to scan a large region in which the probability 
of detection is nonzero. 

In this paper, a decentralized cooperative control algorithm is developed for a number of UAVs, equipped 
with GMTI sensors, to track multiple ground targets and search for new ones in a specified region. The region is 
divided into a number of square sectors1 and it is assumed that each UAV can scan Ns sectors each time. In the 
proposed algorithm the UAVs exchange the information about the sectors scanned, measurements obtained and 
their current kinematic states. Each UAV decides the sectors it scans and the path it follows on its own. In this 
work these decisions are decoupled into two separate problems. An information based objective function is used 
to select the future path of a UAV such that the total information, obtainable by the sensors in the UAVs as 
a group, corresponding to the detected targets, is maximized. In addition, this objective function incorporates 
possible information from the undetected targets, which are included in the form of possible targets at the center 
of the sectors. The objective function used in this paper takes into account the detection probabilities of targets, 
which are based on both range and range rate, and the survival probabilities of the sensors due to hostile fire 
from targets and possible collision with other UAVs, in computing the information for a particular target-sensor 
geometry. 

The algorithm proposed in this paper starts with no prior information about the number of targets or their 
positions. Nonetheless, it is possible to incorporate prior information, if available. The simulation results show 
that the algorithm enables a group of UAVs to gather information in a cooperative manner in the region of interest 
and to detect new targets as they appear. The computational complexity and communication requirements of 
this algorithm are modest enough for the real time applications related to small UAVs with limited computing 
power. Finally, because of its decentralized approach the algorithm is robust and hence, it does not fail in the 
eventuality of loss of some UAVs or communication failure. 

The paper is organized as follows. Development of the objective function for path planning is discussed in 
Section 2. In Section 3 the cooperative control algorithm is described in detail. Simulation results are presented 
in Section 4 and Section 5 presents the concluding remarks. 

2. OBJECTIVE FUNCTION FOR PATH PLANNING 

One of the most important stages in the development of a sensor management algorithm is the choice of objective 
function which requires to be easy to compute and the decisions based on this function should enable the algorithm 
to achieve sensor management goals. In this work we consider the following objective function 

J(fc) = £(ln|Ii(*|fc)|-ln|Ji(*|fc-l)|) +     J2     (ltt|/m,«(*)|-ln|C»l) (1) 
j {m,n}£Sc, 

'Note that it is possible to incorporate any other shapes of sectors in this algorithm. 



where Ij(k\k — 1) and Ij(k\k) are the predicted and updated information matrices for a target j at time step k, 

Im,n(k) is the expected information matrix of new targets in sector {m, n} of the surveillance region and Sjj is 
the set all sectors in which there are no currently tracked targets; I^n is the prior information in sector {m, n} 
where the uncertainty is the same as that of a target that can be anywhere in the sector and move at any possible 
velocity. 

The information matrices in (1) are in the Fisher sense which means they are the inverses of the corresponding 
covariance matrices. J is the total information gain related to all targets under independence and equal weight 
assumptions [12]. Also, each term of J is the difference between the information after update and before 
update. The individual information in (1), which is the (natural) logarithm of determinant of the corresponding 
information matrix, is similar to the negative of Shanon's entropy, ignoring a constant, under the assumption 
of Gaussian error. As entropy is the uncertainty associated with a random variable, it makes sense to use the 
negative of entropy as information. It can be noted that we deviate from the "negative of expected value of 
logarithm of the density function" definition to a more convenient "logarithm of the determinant of information 
matrix" definition of information. Both definitions result in similar functions for a Gaussian density. 

Let us consider that the predicted covariance of a target is P (denoted without time argument, for simplicity) 
in a linear Gaussian system. Also, there is a probability KD of this target being detected at this instant. Hence 
the updated covariance is given by 

, _ ( P - PH'{HPH' + R)~lHP   if the target is detected 
1   P otherwise (2) 

where H and R are the measurement matrix and the measurement covariance matrix, respectively. The expected 
updated covariance matrix is 

P = P-nDPH'{HPH' +R)'1HP (3) 

where the detection event is assumed to be independent of the measurement or process noise. However, in this 
case the information matrix does not have a simple form similar to P~l + H'R~lH unless TTD takes one of the 
extreme values. Since it is much more convenient to work with a form in which total matrix information is 
summation of the information from different (independent) sources, in this work we use the expected updated 
information given by 

I = I + TTDH'R-
1
H (4) 

where / and / are the predicted information and expected updated information, respectively. Note that the 
expected updated covariance is given only approximately by the inverse of the expected updated information. 

In our problem the UAVs scan the targets asynchronously which, in general, leads to a complicated objective 
function. However, if the offset times are small, as in our case, the target-sensor geometry does not change much 
from the scan by one UAV to that by another one. Hence, for convenience, the objective function is constructed 
assuming synchronous scans by all sensors. 

The detection probability of target j by sensor s at time step k is written as 

7TD(fc,s,J) = nl
D{k,sJ)w2

D(k,s,j) (5) 

where Kl
D{k, s,j) is the detection probability (of target j by UAV s at time k) as a function of the range and 

Trp(k,s,j) is the detection probability as a function of the range rate. The first term depends on the specific 
application and the second term is the probability that the range rate measured by the GMTI sensor is higher 
than "minimum detectable velocity" (MDV), discussed later in this section. 

The total survival probability of UAV s, which is equal to the product of target-fire survival probability 
TTg(k,s) and collision survival probability 7r|(fc, s) of this UAV, i.e., 

ns(k, a) = 4(fc, «)wf(M) (6) 

where ^(fc, s), in turn, is the product of target-fire survival probabilities of UAV s in view of each target, i.e., 

irJ(M-n*4(*.*.J) (7) 



and 7r|(fc, s) is the product of collision survival probabilities corresponding to all other UAVs 

The nature of these survival probabilities is application dependent. 

The combined probability that sensor s contributes to the information about target j at time k is given 
by KD{k, s,j)-Rs(k, s). The information obtained by a particular UAV s about target j at time k is given by 
H(k,s,j)'R(k,s,j)~1H(k,s,j) where H(k,s,j) is the measurement matrix and R(k,s.j) is the measurement 
noise covariance matrix corresponding to the sensor-target pair s, j. 

The approximate expected information matrix of target j, following (4), due to the scans by all sensors, is 
given by 

Ijiklk)    =    I^k-l)+ ^5(^3^0(^3, j)H(k,s,j)'R(k,s,j)-lH(k,s,j) (9) 
s 

where Ij(k\k — 1) = Pj(k\k — l)-1. Note that in the above equation the survival event, detection event and 
measurement errors are assumed independent. 

For the sectors that do not contain any of the currently tracked targets, new (undetected) targets are the 
possible source of information. The prior information for sector {m, n}, which is discussed before in this section, 
is denoted by I%n. The new information obtained by a sensor s from sector {m,n} at time step k is zero 
if there is no detection and H(k,s,Tn,n)'R(k,s,Tn,n)^1H(k,s,Tn,n) if a detection occurs, where H(k,s,m,n) 
is the measurement matrix and R(k,s,m,n) is the measurement covariance matrix corresponding to the new 
target. Note that the position of a new target is assumed to be at the center of the sector. The probability of a 
new target detection event in sector {m, n} is given by the product of the probability of detection itoik, s, m, n) 
and the probability of the presence of a new target Trncv,(k, m, n) in this sector, i.e., 

KD,new(k, s, m, n) = *D{k, s, m, n)7rnew(fc, m, n) (10) 

where the term 7TD(A:, S, m, n) is similar to irlD(k,s,j). The only difference is that the former is a function of 
the sensor range from' the center of a sector while the latter is a function of the range between the sensor and 
target. Note that here the factor for the range rate is considered to be unity as no realistic assumption of this 
quantity can be made for an undetected target. The second term in the right hand side of (10), which represents 
probability of presence of a new target, is defined in Section 3. 

As discussed before, the expected information matrix from sector {m, n} when scanned by sensor 5 at time 
step k is taken as 

Im,n{k> S) = -Cn + *D,ncw(k, S, 171, Tl)H{k, S, TTl, Tl)'R(k, S, TTl, n)~lH(k, S, ttl, Tl) (11) 

In this work, in order to restrict more than one UAV from moving toward the same unscanned sector, only the 
maximum information form all sensors is included in the cost function instead of considering the summation of 
information, i.e., 

Im,n{k) ~ max   ln \Im,n(k- S)\ (12) s 

The UAVs are assumed to be equipped with GMTI sensors and the state vector of target j is taken as 

x = [ x*    v{    tf    v{) (13) 

where x, y are the position components in Cartesian coordinates and vx, vy are the velocity components. The 
measurement vector comprises of x-y position and radial velocity r. The measurement matrix, of target j 
corresponding to sensor s, is given by 

H{k,sJ) = 
10 0 0 
0 0 10 
0    cosa(fc, s,j)    0    sina(fc, s,j) 

(14) 



where a{k,s,j) is the azimuth angle of the target j measured by sensor s at time tk- The original position 
measurements are in the form of range r(fc, s, j) and azimuth a(k, s, j) in the presence of noise, which are converted 
to x,y position using the standard conversion [1]. The original position measurements in range, azimuth angle 
and range rate contains independent additive Gaussian noise and the corresponding noise variances are given by 
a2, &a z^d a2, respectively. After conversion, the measurement covariance matrix R(k,s,j) is given by 

R(k,8,j) = 
#1,1 #1,2 0 
#1,2 #2,2 0 

0 0 o'i 

where (skipping the arguments) 

/? I.I r2<72 sin a2 + a2 cos a2 

#2,2    =    r2cr2 cos a2 + a2 sin a2 

#1,2    =    (a2 — r2 a2) sin a cos a 

(15) 

(16) 

(17) 

(18) 

As shown in [19] one can use the observed azimuth in (14) to allow a linear model for the range rate 
measurement. Note that the computation of R(k,s,m,n) is similar to that of R(k,s,j). For the former, the 
position of target is assumed to be at the center of the sector. 

For a GMTI radar, if the magnitude of the measured value of the range rate for a target falls below a threshold 
^min tnen l^e tarSet wiU not De detected. Hence, ^(fc, s, j) is given by 

Tr2D(k,sJ) = 1 - P{-rmin < f(k,s,j) < rmin | r(k,sj\k- l),<Tf(k, s, j\k - l)2} 

where r(k,s,j) is the measured range rate and f(k,s,j\k — 1) is the predicted range rate given by 

f(k,s,j\k - 1) = i4(k\k - l)cosa(fc,s, j\k - 1) + lA(k\k - l)sina(fc,s, j, |fc - 1) 

(19) 

(20) 

where vl(k\k — 1), v^(k\k — 1) are the components of predicted velocity and a(k,s,j, \k — 1) is the predicted 
azimuth angle for target j. 

The variance term Or(k,s, j\k — l)2 in (19) is the range rate measurement prediction variance which is the 
third diagonal term of the innovation covariance matrix 

S(k,sJ)=H(k,s,j)Pj{k\k-l)H{k,sJ)' + R(k,sJ) (21) 

wherein H(k,s,j) the measured azimuth anglea(fc, s, j) is replaced by the predicted azimuth angle a(k, s,j\k— 1). 

Hence "n\,(k, s,j) in (19) is evaluated by integrating a Gaussian density with mean r(fc, s, j\k — 1) and variance 
<jf(k, s, j\k — l)2 in the interval —r. 
tabulated standard error function. 

n *° rmin and subtracting the result from unity. This is available from the 

3. ALGORITHM 

In this section, the algorithm used by each UAV, which results in cooperative control of the UAVs as a group, is 
discussed in detail. This algorithm is capable of tracking detected targets and to search for undetected ones by 
taking into account that new targets can start from the regions already been scanned. The surveillance region is 
divided into sectors and it is assumed that each UAV is capable of scanning N„ sectors in each time period T. In 
this algorithm the decisions on path selection and sectors to scan are taken separately by the UAVs. However, 
these decisions are indirectly connected as a scan in a particular sector reduces the information available from 
this sector which in turn affects the next path decision. 

In this work the probability of existence of a new target in a sector {m,n}, which is required to compute 
information from new sectors as shown in (10), is assumed to have the following form 

,(k, m, n) = 7rmax (m, n) (1 — -(tfc- *(*0)M. 
•) 

(22) 
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Figure 1. Flow chart of the tasks of each UAV. 

where tk is the scan time at step k, 7fmax(m, n) is the maximum value of the probability of new target, sm,n is 
the equivalent last scan time and Amn is a parameter that defines the rate of increase of the probability of a 
new target after a scan in sector {m, n). This models the "appearance" of a new target since the last scan of 
the sector under consideration. The parameters frmax{rn,n) and Am,n are application dependent which can be 
chosen to give different importance to different sectors. The equivalent last scan time 3m,„ is updated after a 
scan by sensor s as follows 

Sm.n{k    ) — tk 
tk — A(k,s,m,n,s) 

if not scanned 
if scanned and target detected 
if scanned and target not detected 

where k+ denotes time immediately after the scan at tk and A(k, s, m, n) is given by 

A(k, s, m, n) = —Am,n In   1 — f 1 — ,-(tk-sm,„(k))/\m. ')  [l-7fD(fc,S,TO,7l)]j 

(23) 

(24) 



In this algorithm each UAV stores the equivalent last scan time of each sector to keep track of the new target 
probability, which needs update only if the corresponding sector is scanned. The derivation of (24) is discussed 
in Appendix. 

Each UAV performs the tasks shown in Figure 1 asynchronously w.r.t. the other UAVs. Each UAV scans Ns 

sectors at an interval of T using a GMTI sensor. The decision about which sectors to scan is taken separately 
from the path decision of this UAV and it does not depend on the state of the other UAVs. The information 
from each section is computed and the best Ns sections are chosen, on that basis, for this scan. 

A function similar to (1) is used for search decision. The only difference is that the information contribution 
from the other sensors is not considered. If there are Nm:n(k) targets in sector {m,n} at time step k then the 
modified information, corresponding to UAV s, form this sector, is given by 

Wm,„(*0 
L,n{k,s)    =      J2   ^\Pj(k\k-l)-1 +Trs(k,s)irD{k,s,j)H(k,sJ)'R(k,s,j)-iH(k,sJ)\ 

7=1 

-lnlPiOfelfc-l)-1! (25) 

where Pj(k\k — 1) is the error covariance matrix corresponding to the predicted state of target j, H(k,s,j) is 
the measurement matrix, R(k, s,j) is the measurement covariance matrix, irs{k, s) is the survival probability of 
UAV s and 7T£)(fc, s,j) is the target detection probability. If sector {m, n} does not contain any of the currently 
scanned targets then modified information from this sector is given by 

Im,n(k,s) = In JjJ,)fl + 7r£,)new(fc, s, m, n)H(k,s, m,n)'R(k,s,m, n)~1H(k,s,m,n)\ -ln|i^n| (26) 

where I^n is the prior information for a sector without target, 7rDnev,(k,s,m,n) is the new target detection 

probability, H(k, s, m, n) is the measurement matrix and R(k, s, m, n) is the measurement covariance matrix for 
a target at the center of the sector. 

After scanning AT, sectors for targets, the detections, equivalent last scan time matrix and UAVs current state 
are transmitted to the other UAVs. There is a irc probability that another UAV will receive this transmission. 
Each UAV maintains its own set of target tracks, which are updated when a new set of detections is either 
obtained by the corresponding UAV or received from another UAV. 

After scanning for measurements, transmitting them and updating the target tracks, each UAV determines 
its path for the next interval T. For a coordinated operation this decision depends on the corresponding UAVs 
knowledge about the current locations of the other UAVs, the current state of the target tracks maintained by 
it and equivalent last scan times of the sectors. The objective function J in (1) is maximized to obtain the 
paths of the UAVs. In this sense, each UAV works like a central node which increases the total computational 
requirement of the system. However, this way the decentralized system avoids possible online negotiation which 
can be disastrous in the presence of communication problems. Also, for a large system, computational load of 
each UAV can be reduced by considering only a small region around it. 

The knowledge of the state of another UAV is updated when information is received from that UAV. In case 
of a failure in communication, the path decided for the particular UAV in the last iteration is assumed to be its 
actual path. If no information is received from a particular UAV for a number of times, the corresponding UAV 
is considered to be lost and future decisions are taken without considering it. 

After setting its course for next interval T each UAV then waits for any transmission from the other UAVs 
as shown in Figure 1. If a new set of detections and scan times are received from another UAV, then the target 
tracks, maintained by this UAV, are updated and, also, the equivalent last scan times are updated, where the 
new scan time for a sector is the maximum of the old scan time and the received scan time. After T seconds the 
UAV once again scans N3 sectors with its GMTI sensor and so on. 
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Figure 2. The paths of six targets in the surveillance region (x - initial positions). 

4. SIMULATION RESULTS 

In this section, we present the simulation results obtained for a 58min scenario in which the surveillance region 
is 40 km x 40 km and it includes 6 targets as shown in Figure 2. The targets, which include maneuvering and 
move-stop-move types, appear in the surveillance region at different times. The first three targets start at the 
beginning of simulation (time 0). Target 1 moves in a straight line on a course of 90° (parallel to the i-axis) 
with a speed lOm/s and it exits the surveillance region at 42min. Target 2 moves at a speed 7.3 m/s on a course 
of 75° and turns 30° to the right at time 33min 20 s and then moves straight. Target 3 moves straight on a 
course of 45° with a speed 7.1 m/s. Targets 2 and 3 continue to move inside the surveillance region during the 
whole simulation. Target 4 enters the surveillance region at 25min close to the the upper left corner with a 
speed 10 m/s on a course of 180° and performs a 90° right turn at 38min 20 s and then continues straight. It 
exits the surveillance region at 55 min 32 s. Target 5 moves in the central part of the surveillance region from 
16min 40 s to 41 min 40 s and, also, it stops for 5 min at 23 min 20 s. Target 6 moves in the upper right part of 
the surveillance region from 33 min 20 s to 46 min 40 s and turns 35° in during a maneuver. For all the targets 
the turn rates of the maneuvers are l°/s. 

The number of UAVs deployed in different simulations vary between 3 to 6 and each of them starts at y 
position of —12 km while keeping a distance of 1 km from the closest ones along the x direction. Initially, the 
UAVs move at a rate of 30 m/s on a course of 360° (along the +y direction). For this simulation, T is 5s, which 
means each UAV performs the set of tasks shown in Figure 1 within that time. The surveillance region is divided 
into 4 km x 4 km sectors and it is assumed that each UAV can scan 10 such sectors each time. The UAVs start 
with no knowledge about the targets and each UAV decides on its path by maximizing J in (1) based on its 
knowledge of the positions of the other UAVs, target tracks and last scan times of the sectors known to the 
corresponding UAV. The success probability of a communication between two UAVs, which is denoted by nc in 
Section 3, is 0.9. 

In this simulation one point track initialization [19] is applied and track maintenance is performed by a 
two stage procedure: measurement to track association, which is performed by the auction algorithm [4], and 
track update using a Kalman filter. A white noise acceleration model is assumed for the targets with process 
noise standard deviation (s.d.) being lm/s2. The measurement noise s.d. are aT = 10 m, ag — 10~3 rad and 
oy = 1 m/s. The number of false alarms in each sector, when scanned, follows a Poisson distribution with mean 
0.1 and the false measurements are uniformly distributed in the sector. 

Commonly for the tracking algorithms presented in the literature, a track is deleted if it is not associated 
with measurements for more than a predetermined number of updates. However, this rule is not based on the 



observability criterion and may result in deletion of tracks because they are unobservable by the sensors used. 
To avoid this, in this work, a quantity 7rtrack is updated each time a set of detections is received, as follows 

7rtrack(fc + 1) 
7Ttrack(fc)(l - JTD) 

1 
if not associated 

otherwise 
(27) 

where TTD is the probability of detection of the particular track. If 7rtrack falls below a predetermined level, 10~6 

in this simulation, the track is deleted from the track list. 

In this simulation, the altitude of the UAVs above the ground is considered to be 1 km and the ground is 
considered to be flat. The UAVs fly at a constant speed of 30m/s and can perform coordinated turns with 
angular turn rate upto l°/s. To set its path for the next period, each UAV decides its angular turn rate by 
maximizing J in (1). Since J also includes the angular turn rates of the other UAVs, these quantities are also 
determined in a joint maximization procedure. The Matlab function 'fmincon' is used to perform this constrained 
optimization. The angular turn rates of the other UAVs are not transmitted as each UAV performs this operation 
independently. 

For each sector {m, n) the UAV management algorithm needs to assume the rate at which the probability 
of a new target increases if the sector is not scanned, denote by Am,n in (22), and the maximum value of the 
probability of a new target, denoted by 7rmax("i, ")• In this simulation these parameters are assumed to be 5 min 
and 10~4, respectively, for all sectors. 

0 20 40 
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0 0.5 1 
sensor-sensor rjist. (km) 

Figure 3. Detection and survival probabilities assumed in this simulation. 

Figure 3 shows the survival probabilities and detection probability as a function of range, as used in this 
simulation. It can be seen that the survival probabilities increase as the target-sensor distance and sensor-sensor 
distance increase. However, the detection probability w.r.t. range increases as the distance between target-sensor 
decreases. It is important to note that in a real life scenario the survival and detection probabilities depend 
on the terrain topography and the algorithm proposed in this work is applicable for any assumption on these 
probabilities. The detection probability factor as a function of the range rate of a target w.r.t. a sensor is a step 
function being 1 if the target range rate magnitude is more than 2 m/s and 0 otherwise. 

Figures 4 and 5 show 8 snapshots in a typical simulation using 5 UAVs where triangular shapes represent 
the positions of the UAVs and their directions of motion are along the sharp corners. In these figures black lines 
represent current tracks and blue stars represent the last updated position of the corresponding targets. Also, 
the yellow patches denote sectors scanned by the UAVs in the last period and the blue patches denote sectors 
not scanned for more than 1 min. Note that in this case the equivalent last scan time is used as discussed in 
Section 3. The first of the snapshots, which shows the positions of the tracks and UAVs at 7 min, consists of a 
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Figure 4. The first four snapshots showing UAV positions, target tracks and sectors scanned in a typical simulation 
using five UAVs. 
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Figure 5. The last four snapshots showing UAV positions, target tracks and sectors scanned in a typical simulation using 
five UAVs. 

large number of blue sectors because the UAVs, which start near the lower left corner, have not yet reached these 
sectors. Prom the next snapshot onwards there are very few blue sectors as each sector is repeatedly scanned 
even if none of the current targets belong there. Figure 6 shows the total paths of the UAVs, which start from 
the lower left of the surveillance region, and the tracks obtained by UAV 1. In this figure it can be seen that 
all of the targets are tracked for their complete duration of path inside the surveillance region, after they are 
detected. 

2Note that in our simulations due to imperfect communication tracks obtained by different UAVs are not identical. 



Figure 6. The complete path of the UAVs and the tracks of targets in the typical simulation using 5 UAVs. 

5. CONCLUSIONS 

In this paper, a novel cooperative control algorithm, for a number of UAVs searching and tracking multiple 
targets in a large region, is presented. According to this algorithm each UAV broadcasts its current scan and 
detection information and decides its path separately according to an information theoretic objective function, 
which incorporates target state information as well as target detection probability and UAV survival probabilities 
due to hostile fire by targets and, also, due to collision with other UAVs. 

A simulated scenario consists of a 40 km x 40 km surveillance region, 6 targets, which includes maneuvering 
and move-stop-move types, and 3-6 UAVs, in different cases. The results show that the cooperative control 
algorithm enables the UAVs to maintain almost similar average accuracy for different tracks. Also, as the 
number of UAVs increase the target state (containing position and velocity components) estimation RMSE and 
target detection delays for all tracks decrease while the continuity of tracks improve. 

Appendix 

The derivation of the update of equivalent scan time sm>n for sector {m, n} is discussed in this section. The 
probability that there is a undetected target after a scan by sensor s in sector {m, n} is equal to the product of 
the probability of a new target in this sector before the scan and the probability of no detection in this sector, 
i.e., 

7Tncw(&+, 771, n)  = 7T new(k, TO, tl) (1 - TTD(k, S, 771, «)) (28) 

where k+ denotes the time immediately after the scan at tk and 7rncw(fc,m, n) is given in (22). As discussed 
before the probability of detection corresponding to a sector is assumed to be equal to that probability at the 
center of the sector. Next, 7rncw(A:+, m,n) can be expressed in terms of the updated equivalent last scan time in 
sector {m, n} as follows 

,(fc + ,77l,7l) =7fmax(m,n) (l - -(«* ,(k+))/K (29) 

The equation (24) is obtained by substituting 7fnew(fc+, m, n) by (28) and then solving for sm,n(fc+). 
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ABSTRACT 

In this paper we propose a cooperative control algorithm for a group of UAVs carrying out surveillance — 
search, tracking and classification — over a large region which includes a number of targets. The goal is to 
track and classify detected targets as well as search for new targets. The UAVs are assumed to be equipped 
with Ground Moving Target Indicator (GMTI) radars, which measure the locations of moving ground targets 
as well as their radial velocities (Doppler). In addition, a classification sensor is mounted on each UAV that can 
obtain target class information. The surveillance region is divided into a number of sectors and it is assumed 
that the GMTI sensor on each UAV scans a fixed number of such sectors in each period of its operation. The 
sensor responsible for class information can scan only a small circular region around the predicted position of 
a target. In this paper, a decentralized cooperative control algorithm is proposed, according to which each 
UAV transmits the current scan information (either kinematic or class information) and detection information 
(including "negative information") to the other UAVs. Each UAV makes its scan decision and path decision 
separately, based on information-based objective functions, which incorporate target state information as well 
as target detection probability and survival probability due to possible hostile fire by targets and collision with 
other UAVs. The proposed algorithm requires limited communication and modest computation and it can handle 
failure in communication and loss of UAVs. 

Keywords: target classification, sensor management, cooperative control, UAV path planning, ground target 
tracking. 

1. INTRODUCTION 

A number of UAV management algorithms can be found in the literature. In [14] a cooperative control algorithm 
for multiple UAVs to simultaneously reach a predetermined target location, which maximizes the survivability 
of the UAVs due to exposure to threats while adhering to fuel constraint, is addressed. A hierarchical decision 
mechanism is proposed in which at team level the estimated time until arrival is computed and at UAV level 
path planning is performed. In [3] a similar approach, based on Voronoi diagram in path planning, is used for 
the simultaneous intercept problem in the presence of dynamic threats. Similar approaches can be found in 
[6, 15]. In [10] another hybrid control structure is proposed for the simultaneous intercept problem in which 
UAV-to-target allocation and time to reach the targets are decided in the central node, while the path decisions 
are taken locally in UAVs. 

In [17] a multi-vehicle path planning problem in hostile environment is solved by dynamic programming. 
In this centralized algorithm path decisions are taken in terms of connecting pre-defined waypoints. In [18] a 
decentralized cooperative search algorithm is proposed in which UAVs exchange environment information but 
independently decide their paths by minimizing a convex combination of costs associated with subgoals. It can 
be noted that for UAV management problems decentralized algorithms are preferred as they have advantages of 
graceful degradation, scalability and modularity properties over the centralized ones. In [9], for a search problem, 
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dynamic programming is used to make finite horizon decisions. Note that our problem includes search, tracking 
and classification. 

In [8] a decentralized sensor management algorithm, based on maximizing information gain, is presented. 
An online negotiation arrangement between the sensors is used to decide the assignment of known targets to 
generate a coordinated sensor-platform trajectory for obtaining information about static features (targets). In [5] 
a decentralized multi-UAV search algorithm, for a lost vehicle in a stationary state, is proposed. This algorithm is 
synchronous, according to which each UAV negotiates with others by communicating the expected measurement 
likelihood for its best path given the measurement likelihood of other UAVs. 

An important objective of the surveillance system is to classify the detected targets. The problem of optimal 
search for joint detection and classification of a stationary target was first considered in [21], which assumes 
separate sensors for these objectives. It is shown that the optimal plan is to allocate classification effort immedi- 
ately after targets are detected. In [7] continuous search of multiple targets, which belong to multiple classes, is 
considered, where the probability of detection and classification is a function of the search effort. In [12] design 
of search patterns in the presence of false contacts is presented where classification is modeled as an uncertain 
but instantaneous process. In [6] a cooperative classification algorithm for stationary targets is developed in 
which a hierarchial path planning is performed to view complementary aspect angles. 

In [16] kinematic information is combined with the feature information obtained from high range resolution 
(HRR), inverse synthetic aperture radar (ISAR), and synthetic aperture radar (SAR) signatures, to obtain 
improved classification and association for tracking moving ground targets. An integrated classification and 
tracking algorithm is presented in [2]. In our proposed algorithm the classification and tracking are considered as 
different problems as it is assumed that the GMTI sensor mounted on UAVs does not provide any classification 
information and the classification sensor does not provide reliable position information. 

In our previous work [19, 20] a decentralized cooperative control algorithm is developed for a number of UAVs, 
equipped with GMTI sensors, to track multiple ground targets and search for new ones in a specified region. The 
region is divided into a number of square sectors2 and it is assumed that each UAV can scan Ns sectors each time. 
In the proposed algorithm the UAVs exchange the information about the sectors that were scanned and yielded 
no detections ("negative information")3, the measurements obtained and their current kinematic states. Each 
UAV decides on the sectors it scans and the path it follows on its own. In this work these decisions are decoupled 
into two separate problems — scan decision and path decision — to make the surveillance problem tractable. 
In both cases, the corresponding objective functions are based on information gain. The objective functions 
incorporate information from detected targets as well as possible information from the yet undetected targets, 
which are included in the form of possible targets in the sectors. Also, the objective functions incorporate the 
detection probabilities of targets, which are based on both range and range rate, and the survival probabilities of 
the UAVs due to hostile fire from targets and possible collision with other UAVs, in computing the information 
for a particular target-sensor geometry. 

In our current work classification of detected targets is considered as an additional objective of the cooperative 
control algorithm. It is assumed that, along with the GMTI sensor, each UAV carries a classification sensor, for 
example a CCD camera. This additional sensor sends its information to a classifier block that outputs one of 
the target classes. The probabilities of observation of different outputs given different actual classes of targets 
form the class confusion matrix. This matrix is assumed to be known for each value of target-UAV distance 
and the classification accuracy increases as this distance decreases. In this work it is assumed that classification 
with any degree accuracy can be obtained from any particular direction, i.e., spatial diversity does not improve 
classification results. 

The objective function for path planning, in general, is a weighted summation of the total kinematic informa- 
tion, discussed in [20], and the total classification information obtainable. However, to facilitate fast classification, 
the information contribution of a UAV closest to a detected target is equal to the information obtainable from 
this target until it is classified to a predefined level of accuracy.   After that, this target's importance in path 

2Note that it is possible to incorporate any other shapes of sectors in this algorithm. 
information about sectors that yielded no detection decreases the expected information content of the corresponding 

sectors. Hence such information is denoted as "negative information". 



planning is de-emphasized. At the same time a target which is already classified to a particular level of certainty 
is retained longer in the case of no detection as the tracker has higher confidence in the track corresponding to 
the target. 

The objective function for scan decision is similar to the one discussed in [20] with the addition that a UAV 
decides to use the classification sensor when the predicted classification information gain is more than a threshold. 
It is assumed that a UAV can use only one type of sensor at a time. 

The paper is organized as follows. The objective functions for scan decision and path planning is discussed in 
Section 2. In Section 3 the cooperative control algorithm is described in detail. Simulation results are presented 
in Section 4 and Section 5 presents the concluding remarks. 

2. THE OBJECTIVE FUNCTIONS 

One of the most important stages in the development of a sensor management algorithm is the choice of objective 
functions which should be easy to optimize and the decisions based on these functions should enable the algorithm 
to achieve the sensor management goals. In this section we introduce the objective functions which are used for 
the scan decisions and path decisions. 

In this work definition of information follows the entropic information measure. For a random variable x 
with probability density function /(x) the entropic information measure is given by 

£{ln(/(x))} = fX /(x)ln(/(x))dx (1) 
J -co 

If x is a Gaussian random vector with information matrix / (inverse of its covariance) then the entropic infor- 
mation is given by 

2G(x) = ^ln((27re)"|/|) (2) 

where n is the dimension of x. 

If x is a discrete random variable then the entropic information is given by 

N 

2k(x) = ^P(i01nP(x*) (3) 
t=i 

where x^s are N discrete levels of x and P{xi)s are the probabilities of those levels. 

2.1. Kinematic Information 

In this work computation of the kinematic information matrix (inverse covariance) follows [20]. Since it is 
convenient to work with a form in which the total matrix information is the summation of the information 
from different (independent) sources4, in this work we use the following expression of the expected updated 
information corresponding to target j at time step k (conditioned on the information at k — 1) 

Ijiklk) =Ij(k\k- l) + Y,*s(k,s)nD(k,s,j)H(k,s,j)'R(k,s,j)-lH(k,s,j) (4) 
s 

where Ij(k\k — 1) is the information matrix (inverse covariance) corresponding to the predicted state, which 
depends on the target motion model (see, e.g., [1] ch. 5). The combined probability that UAV s contributes to 
the kinematic information about target j at time k is given by 7rs(fc, s)7r£>(fc, s, j), where 7r,s(fc, s) is the survival 
probability of UAV s and nD(k, s,j) is the probability of detection of target j by GMTI sensor on UAV s given 
survival of the corresponding UAV. The kinematic information obtained by a particular UAV s about target j at 
time k is given by H(fc, s,j)'R(k, s,j)~1H(k, s,j) where H(k, s,j) is the measurement matrix and R(k, s,j) is the 

4This statement is true for already detected targets only. For sectors without detected target the total matrix informa- 
tion is maximum of the matrix information obtainable by any sensor. This avoids all UAVs from moving to a particular 
sector. 



measurement noise covariance matrix corresponding to the sensor-target pair at time k. The expected updated 
information corresponding to target j, when only UAV s participates in kinematic information gathering, is given 
by 

I.j(k\k) = Ij(k\k- 1) +7TS(k,3)ivD(k,s,j)H(k,s,jyR(k,3,j)-1H{k,s,j) (5) 

The detection probability of target j by the GMTI sensor on UAV s at time step k given the survival of the 
UAV is written as 

*D(k,s,j) =*l
D{k,s,i)TT2

D{k,s,j) (6) 

where itxD{k, s,j) is the detection probability (of target j by sensor s at time k) as a function of the range and 
"•£>(£.s* j) is tne detection probability as a function of the range rate. The first term depends on the specific 
application and the second term is the probability that the range rate measured by the GMTI sensor is higher 
than the "minimum detectable velocity" (MDV) (see [19] for detailed discussion). 

The total survival probability of UAV s is equal to the product of target-fire survival probability 7r^(A:, S) and 
collision survival probability 7r§(/c, S) of this UAV, i.e., 

ns(k,s) = n1
s(k,s)nl(k,s) (7) 

where Kgik, s), in turn, is the product of target-fire survival probabilities of UAV s in view of each target, i.e., 

«&(*.«)-n^c***-^ (8) 
i 

and 7r|(fc, s) is the product of collision survival probabilities corresponding to all other UAVs 

*&*.*)-n «*(*»«•*) (9) 

The dependence of these probabilities on the sensor to target distances (and possibly other factors) is application 
dependent. 

The surveillance region is divided into a number of sectors and for the sectors that do not contain any of the 
currently tracked targets, new (undetected) targets are the possible source of information. The prior kinematic 
information for sector {m, n} is denoted by /„ n, where the uncertainty is the same as that of a target that can 
be anywhere in the sector and move at any possible velocity. The new kinematic information obtained by UAV 
s from sector {m, n} at time step k is zero if there is no detection and H(k, s, m, n)'R(k, s, m, n)_1/f(fc, s, m, n) 
if a detection occurs, where H(k, s, m, n) is the measurement matrix and R(k, s, m, n) is the measurement noise 
covariance matrix corresponding to the new target. The position of a new target is assumed to be at the center 
of the sector. The probability of a new target detection event in sector {m, n} is given by the product of the 
probability of detection #£>(&, s, m, n) and the probability of the presence of a new target (with range rate above 
the MDV) nncw(k,m,n) in this sector, i.e., 

fiD,new(fc, S, 771, 71) = 7TD(fc, S, 771, n)7Tnew(fc, 771, 7l) (10) 

where the term no{k, s, m, n) is similar to ^(k, s,j). The only difference is that the former is a function of the 
GMTI sensor range from the center of a sector while the latter is a function of the range between the sensor and 
target. 

The second term in the right hand side of (10), which represents the probability of presence of a (moving) 
new target in sector {m, n} at time step k, is assumed to have the following form 

7rnew(fc, m, n) = 7w(m, n) (l - e-«*-<—<*»/*—) (11) 

where tk is the scan time at step k, nmax(m,n) is the maximum value of the probability of new target, tm)„ is 
the equivalent last scan time and Ami„ is a parameter that defines the rate of increase of the probability of a new 
target after a scan in sector {771,71} yielded no detection.  This models the "appearance" of a new target since 



the last scan of the sector under consideration. The parameters 7rmax(m,n) and Am,n are application dependent 
which can be chosen to give different importance to different sectors. 

In view of the above, the expected kinematic information matrix from sector {m, n) when scanned by the 
GMTI sensor of UAV s at time step k is 

Im,n(k, S) = I^n + 7fD,new(fc, 8, TU, Tl)H(k, S, 771, n)'R(k, S, 771, 7l)-1.tf(A;, S, 771, n) (12) 

Entropic information can be computed from the above mentioned information matrices by using (2). Note 
that in our work target state estimates and predictions are assumed to be Gaussian distributed. 

2.2. Classification Information 

The class probability vector corresponding to target j before the scan at time k is denoted as Hj(k - 1) and 
the classifier confusion matrix corresponding to the target j and classification sensor on UAV a is denoted by 
C(k,s,j). An element cab(k, s,j) of the classifier matrix is defined as the probability of the event that the 
classifier output, if target j is scanned by the classification sensor, is ((k, s,j) = b given that the true class is 
Kj = a, i.e., 

cab(k,s,j) = P(C(M,j) = b\Kj=a) (13) 

If the classifier output is b, then the updated class probability is given by [2] 

.. liAt    M.N     M_ cb{k,s,j)<S)fj.j(k-l) 

where Cb(k,s,j) denotes the 6th column of the class confusion matrix and (£) is the Schur-Hadamard product 
(term by term). The corresponding classification information I\j,k\£(k,s,j) = b] about target j at time step k 
can be computed using (3). 

The expected updated class information of target j at time step k can be obtained considering all possible 
combinations of the target's true class and classifier output in UAV s as follows 

l(k,s,j)   =   E{IU,k)} 
- J2mmk,sj) = b}p{ak,s,j) = b} (is) 

6 

where the probability that the observation is 6, is given by 

P{C(k,»,j) = b} = Y,cab(k,S,j)ti°(k-l) (16) 
a 

where fj.^(k - 1) is the probability that target j belongs to class a given the information at k - 1. 

2.3. The Objective Function for Scan Decision 

The expected information gain from the sectors is used as the criterion for the scan decisions made by each UAV. 
It is assumed that while the GMTI sensor can scan Ns sectors, the classification sensor can only scan one small 
circular region of radius rs. Furthermore, only one sensor on each UAV can perform scan operation during one 
time period T. 

Firstly expected classification information gain is computed for each target. The target corresponding to the 
maximum predicted classification information gain is chosen for a scan by the classification sensor only if the 
gain is more than a threshold. Defining 

g„ =max{i(fc, s,j) - l(k- l,j)}    and    ws = argmax{Z(fc,s, j) - X{k - 1, j)} (17) 
j i 

target ws is scanned for the class information by UAV s if gs > c9, where c9 is a threshold and l(k - 1, j) is the 
class information corresponding to target j at time step fc — 1. 



If a UAV decides against using the classification sensor then the kinematic information gain from the sectors 
is computed in the following manner. If there are Nm,n{k) targets in sector {m,n} at time step fc then the 
expected kinematic information gain by the GMTI sensor on UAV s from this sector is given by 

Nm,n(fc) 

-C?(M)    =       E   ln|/.j(fc|*)|-ln|/J(fc|fc-l)| (18) 
i=i 

where Ij(k\k — 1) is the predicted information matrix and Iaj(k\k) is the expected updated information matrix 
corresponding to target j, when this target is scanned by sensor s, as defined in (5). Note that in (18) each term 
in the summation denotes expected kinematic information gain corresponding to a target if the sector {m, n} is 
scanned. 

If sector {m, n} does not contain any of the currently detected targets then the expected kinematic information 
gain from searching this sector is given by 

J££(M) = ln|/m,n(fc,5)| - In |#iB| (19) 

where /£, _ is the prior information matrix for sector {m, n} and 7min(fc, s) is the expected updated information 
matrix corresponding to sector {m,n}, when scanned by sensor s, as defined in (12). The best N, sectors in 
terms of objective function J%*£(k, s) are chosen for scan by the GMTI sensor on UAV s at time step k. 

2.4. The Objective Function for Path Decision 

The detected targets, which form the set Tp, are categorized into two sets: the set containing targets which are 
classified well (denoted as T\) and the set containing the remaining targets (denoted as 7^). A target is considered 
to be classified well if the maximum class probability is higher than a threshold. To facilitate fast classification 
of each target in set T2 the path decision of the UAV closest to it is dictated by the information obtainable from 
the particular target. Such dedicated UAVs form set A and the remaining UAVs form set B. While information 
gain from all targets and all sectors is considered in path decision of UAVs in set B, information gain from only 
the closest target in set T2 is considered in path planning of UAVs in set A (this avoids conflicts). 

The information gain achievable by the sensors related to detected or undetected targets under independence 
is considered to be the (global) objective function for the path decision, i.e., 

J*"h(k)   m    J2 yi(^\Ii(k\k)\-ln\Ij(k\k-l)\+v(msx{t{k,sJ)-I(k-lJ)})) 

+     £      (ln|/m,n(*)|-ln|£.»l) (20) 
{m,n}£Sa 

where Ij(k\k — 1) and Ij(k\k) are the predicted and expected updated information matrices at time step fc for 
target j within the set of detected targets, denoted by To- These information matrices are defined above. The 
quantities T{k - 1, j) and l(k,s,j) are the classification information about target j at time step fc - 1 and 
expected classification information if the target is scanned by the classification sensor on UAV s, respectively. 
Note that UAV s in set A is considered in computation of 7j(fc|fc) only if j 6 7^ and UAV s is its closest. The 
relative weight between the kinematic and classification information is 77, which is a design parameter. The 
maximum of the classification information gain for all UAVs is included in (20) as only one UAV is expected to 
obtain class information of a target. To facilitate the detection and classification of new targets, fj takes less 
than unity value if the target j is in set T\. Otherwise the value of 7j is 1. 

In (20) SQ is the set of all sectors in which there are no currently tracked targets and Im,n(k) is the expected 
information matrix of new targets in sector {m,n} of the surveillance region given by 

Im,n(k) = ^w,n(fci s)    where s = argmax |/m,n(fc,s)| (21) 

where Im,n(k,s) is the expected information matrix from sector {m,n} when scanned by sensor s at time step 
fc, which is defined in (12). Classification information gain for undetected targets is not included in the objective 



function. Note that in order to restrict more than one UAV from moving toward the same unscanned sector, only 
the maximum information from all sensors is included in the cost function instead of considering the summation 
of information. 

In our problem the UAVs scan the targets asynchronously which, in general, leads to a complicated objective 
function. However, if the offset times are small, as in our case, the target-sensor geometry does not change 
much from the scan by one UAV to that by another one. Hence, for convenience, the objective function for path 
decision is constructed assuming synchronous scans by all sensors. Note that, the algorithm described in this 
paper provides a solution to a one-step ahead planning problem. It is shown to be effective, while requiring much 
less computation than a longer horizon planning, which is currently under investigation. 

3. THE ALGORITHM 

In this section, the algorithm used by each UAV, which results in cooperative control of the UAVs as a group, 
is discussed in detail. This algorithm is capable of tracking and classifying detected targets and to search for 
undetected ones by taking into account that new targets can start in sectors that have already been scanned. In 
this algorithm the decisions on path selection and sectors to scan are taken separately by the UAVs. However, 
these decisions are indirectly connected as a scan in a particular sector reduces the information available from 
this sector which in turn affects the next path decision. 

Each UAV performs the following tasks asynchronously w.r.t. the other UAVs. Each UAV makes the scan 
decision as discussed in Section 2.3. If the UAV decides to use the classification sensor it scans a circular region 
of radius rs around the predicted positon of the intended target. Otherwise, the UAV scans Ns sectors by using 
its GMTI sensor. The expected information gain from each sector is computed using (18) for sectors containing 
currently tracked targets (track maintenance) and using (19) for sectors which do not contain any of the currently 
tracked targets (search). The best Ns sectors are chosen, on that basis, for this scan. These scan decisions by 
each UAV are taken independently of the state of the other UAVs. 

The equivalent last scan time sm,„ is updated after a scan by the GMTI sensor on UAV s as follows 

I     (]g+) — / *»»>n(*) if not scanned -22> 
m \ tfc — A(fc, s, m, n, s)    if scanned and target not detected 

where k+ denotes time immediately after the scan at tk and A(k, s, m, n) is given by 

A(fc,s,m,n) = -Am,nln [l - (l - ,-«*-**•(*))/*—) [1 - #©(*,s,m,n)]] (23) 

In this algorithm each UAV stores the equivalent last scan time tm,n(k) of each sector to keep track of the new 
target probability, which needs update only if the corresponding sector is scanned. The derivation of (23) is 
discussed in [19]. 

Next, the measurements, which include classifier output in case of a scan by the classification sensor and 
detections if GMTI sensor is used, the equivalent, last scan time matrix and the UAVs current state are trans- 
mitted to the other UAVs. There is a wc probability that another UAV will receive this transmission. Each UAV 
maintains its own set of target tracks, which are updated when a new set of detections is either obtained by the 
corresponding UAV or received from another UAV. 

After scanning for measurements, transmitting them and updating the target tracks, each UAV determines 
its path for the next interval T. For a coordinated operation this decision depends on the corresponding UAVs 
knowledge about the current locations of the other UAVs, the track picture maintained by it5 and the equivalent 
last scan times of the sectors. The objective function JP*4*1 in (20) is maximized to obtain the path of the 
UAV. Since JPath depends on the future positions all of the UAVs, each UAV requires to optimize it w.r.t. the 
paths of all UAVs and then executes its own part of the solution. In this sense, each UAV works like a central 
node and this way the decentralized system avoids possible online negotiations which can be disastrous in the 

sNote that each UAV updates its track picture using measurements obtained by it and those received from other UAVs. 
The track picture may be different from UAV to UAV because of imperfect communication. 



presence of communication problems. For a large system, the computational load of each UAV can be reduced 
by considering only a certain region around it. Note that the proposed algorithm makes the assumption that the 
actions (turn rates) computed by different UAVs are almost the same due to the similarity of their information 
about the current track picture. 

The knowledge of the state of another UAV is updated when information is received from that UAV. In case 
of a failure in communication, the path decided for the particular UAV in the last iteration is assumed to be its 
actual path. If no information is received from a particular UAV for a number of times, the corresponding UAV 
is considered to be lost and future decisions are taken without considering it. However, if transmissions are once 
again received from a "lost" UAV it is included in the future decisions. 

After setting its course for next interval T each UAV then waits for any transmission from the other UAVs. 
If a new set of detections and scan times are received from another UAV, then the target tracks, maintained 
by this UAV, are updated and, also, the equivalent last scan times are updated, where the new scan time for a 
sector is the maximum of the old scan time and the received scan time. After T seconds the UAV once again 
makes its scan decision and so on. 

4. SIMULATION RESULTS 

In this section, we present the simulation results obtained for a 58 minute scenario in which the surveillance 
region is 40 km x 40 km and it includes 6 targets. The targets, which include maneuvering and move-stop-move 
types, appear in the surveillance region at different times. A detailed discussion on targets' paths is provided in 
[19]. 

The number of UAVs deployed is 4 and each of them starts at y position of —12 km while keeping a distance 
of 1 km from the closest ones along the x direction. Initially, the UAVs move at a speed of 30m/s on a course 
of 0° (along the +y direction). For this simulation, T is 5s, which means each UAV performs the set of tasks 
described in Section 3 within that time. The surveillance region is divided into 4 km x 4 km sectors and it is 
assumed that the GMTI sensor on each UAV can scan 5 such sectors each time. Each UAV can scan a circular 
region of radius 100 m, which is previously denoted by rs, by using the classification sensor. The UAVs start 
with no knowledge about the targets and each UAV decides on its path by maximizing 7Path in (20) based on 
its knowledge of the positions of the other UAVs, target tracks and last scan times of the sectors known to the 
corresponding UAV. The success probability of a communication between two UAVs, which is denoted by nc in 
Section 3, is 0.9. 

In this simulation one point track initialization is applied and track maintenance is performed by a two stage 
procedure: measurement to track association, which is performed by 2-D assignment via the auction algorithm 
[4], and track update using a Kalman filter. A discretized continuous-time white noise acceleration model [1] is 
assumed for the targets with process noise power spectral density being 1 m2/s3. The measurement noise s.d. 
corresponding to the GMTI sensors, are aT = 10 m, ag = 10-3 rad and oy = 1 m/s. The number of false alarms in 
each sector, when scanned, follows a Poisson distribution with mean 0.1 and the false measurements are uniformly 
distributed in the sector6. As discussed in Section 2.4 a target is considered to be classified well if its maximum 
of the class probabilities is higher than a threshold, which in this simulation is 0.9. In the objective function 
for path decision (20) the relative weight between kinematic and classification information gain is denoted by 
T]. Although in this simulation spatial diversity of classification information is ignored, target the detection 
probability by GMTI scan as a function of range rate is directional. Hence classification information can be 
obtained from any direction but the same is not true for kinematic information. For this reason in this work 77 
is chosen to be equal to 0.1 to emphasize the kinematic information. For the targets that are classified well, the 
constant 7j that emphasizes the corresponding information gain is reduced to 0.1 to facilitate the detection and 
classification of new targets. 

Commonly for the tracking algorithms presented in the literature, a track is deleted if it is not associated 
with measurements for more than a predetermined number of updates. However, this rule is not based on the 
observability criterion and may result in deletion of tracks because they are unobservable by the sensors used. 

6While the UAV management does not explicitly include false alarms, it is shown to operate successfully also in their 
presence. 



To avoid this, in this work, track quality index denoted by 7rtrack is updated each time a set of detections is 
received, as follows 

""track (fc) (1 — fl*£>)    if not associated 
1 otherwise 

7Ttrack(A;+ 1) "{ (24) 

where irD is the probability of detection of the particular track. If the track quality index falls below a prede- 
termined level of 10~6 for a target that is classified well and 10~3 otherwise, the track is deleted. Note that 
the targets that are classified well are retained longer in the event of missed detection as the tracker is more 
confident about such a track. Also, tracks were confirmed only after obtaining 3 measurements for them. In our 
simulations not a single false track is confirmed. 

In this simulation, the altitude of the UAVs above the ground is considered to be 1 km and the ground is 
considered to be fiat. The UAVs fly at a constant speed of 30m/s and can perform coordinated turns with 
angular turn rate up to 6c/s. To set its path for the next period, each UAV decides its angular turn rate by 
maximizing Jpath in (20). Since JP**11 corresponding to the information matrix based algorithm depends on 
the future positions of the other UAVs which in turn depend on their turn rates for the next period, the turn 
rates of all UAVs are determined in a joint maximization procedure. The Matlab function 'fmincon' is used to 
perform this constrained optimization. The angular turn rates of the other UAVs are not transmitted as each 
UAV performs this operation independently. 

For each sector {m, n} the UAV management algorithm needs to assume the rate at which the probability 
of a new target increases if the sector is not scanned, denoted by Am,„ in (11), and the maximum value of the 
probability of a new target, denoted by nmax(m, n). In this simulation these parameters are assumed to be 5 min 
and 10~4, respectively, for all sectors. A UAV is considered lost by another UAV if there is no information from 
the former UAV for 5 consecutive periods. In our simulations none of the UAVs was incorrectly assumed to be 
lost, i.e., there was no instance of five consecutive transmission failures from one UAV to another. 
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Figure 1. Components of the class confusion matrix vs. target-UAV distance. 

The same survival and detection probabilities as a function of range are used as in [19]. The detection 
probability factor as a function of the range rate of a target w.r.t. a sensor is a step function being 1 if the target 
range rate magnitude is more than 2 m/s and 0 otherwise. In this simulation the classifier output belongs to a 
set of three, same as the track class. The class confusion matrix has the following form 

C = 
Mr) h(r) f3(r) 
Mr) Mr) Mr) 
Mr)    Mr)    Mr) 

(25) 



where r is the distance between the target and the classification sensor in the UAV. Figure 1 shows the elements 
of C as a function of r. The minimum information gain for a classifier sensor scan, denoted by ws in Section 2.3, 
is 0.2. 

(a) Target 2 classified <t>) Targat 1 classified 

Figure 2. Snapshots at the simulation times when target 1 and 2 are classified with satisfactory level of accuracy. 
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Figure 3. Snapshots at the simulation times when target 3 and 5 are classified with satisfactory level of accuracy. 

Figures 2-4 show snapshots in a typical simulation using four UAVs which follow information based objective 
functions for path planning and scan decision. The snapshots are taken at the moments when different targets 
are being classified with intended level of accuracy. The triangular shapes represent the positions of the UAVs 
and their directions of motion. In these figures the black lines represent current tracks and the stars represent 
the last updated position of the corresponding targets. Also, the yellow (grey) patches denote sectors scanned 
by the GMTI sensors in the last period and the blue (dark) patches denote sectors not scanned for more than 
1 min. Note that in this case the equivalent last scan time is as in (22). The smaller red (dark) patches show the 
target positions where the classification sensors are used. It can be seen that while some UAVs are on a mission 
to classify the targets fast, the remaining UAVs cover the rest of the region for search and tracking. 

Figure 5 shows the complete path of the UAVs and the tracks obtained by UAV 1 during the simulation. It 
can be seen that UAVs perform well in terms of fast target detection and tracking. In addition all six targets 



(a) Target 4 classified (b) Target 6 classified 

Figure 4. Snapshots at the simulation times when target 4 and 6 are classified with satisfactory level of accuracy. 

Figure 5. The complete path of the UAVs and the tracks of targets in the typical simulation using 4 UAVs which follow 
the information based algorithm. 

are classified with the intended level of accuracy. 

5. CONCLUSIONS 

In this paper, a novel cooperative control algorithm, for a number of UAVs searching for targets in a large 
region, tracking and classifying them, is presented. According to this algorithm, each UAV broadcasts its 
current scan and detection information and decides on its path separately according to an information-based 
objective function, which incorporates target state information as well as target detection probability and UAV 
survival probabilities due to hostile fire by targets and, also, due to possible collision with other UAVs. 

A simulated scenario that consists of a 40 km x 40 km surveillance region, and 6 targets, which include 
maneuvering and move-stop-move targets has been shown. The results from a typical run show that 4 UAVs are 
able to detect and track all targets. In addition, all of the targets are classified to the intended high accuracy. 
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